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ABSTRACT

Moore, Richard McCrea. Ph.D., Purdue University, May 1988. Numerical
Solutions of Unsteady Inviscid Transonic Turbine Cascade Flows. Major
Professor: Joe D. Hoffman, School of Mechanical Engineering.

A numerical analysis has been developed to solve two-dimensional inviscid

transonic turbine-type cascade flowfields. This analysis combines accuracy

comparable to that of the numerical method of characteristics with the

efficiency of finite difference methods. The MacCormack explicit finite

difference method is used to solve the unsteady Euler equations. Steady

solutions are calculated as asymptotic solutions in time. A conservation

variable formulation of the Kentzer method has been developed in this

investigation and is used to derive appropriate equations for the flowfield

boundaries. The Kentzer method is based on characteristic theory, but uses a

finite difference method, consistent with the method used at interior points, to

integrate the appropriate boundary equations. A grid generator has been

developed to create C-type grids around cascade blades using techniques

similar to the Poisson equation grid generation techniques developed by Steger

and Sorensen. Two different planar turbine-type cascades have been studied.

The AACE II cascade blades are typical of the nozzle blades found in the first

stator in a turbine. The GMA 400 cascade blades are typical of later turbine

stator blades. Numerical studies were performed with maximum Mach
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numbers in the flowfields ranging from 0.8 to 1.35. Numerical results are

verified using experimentally measured blade surface static pressure data. A

numerical method of characteristics cascade flow solver has been developed to

provide a relative standard for numerical results. The MacCormack code and

the characteristics code produce very similar results and both are in excellent

agreement with the experimental results.
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ABSTRACT

Moore, Richard McCrea. Ph.D., Purdue University, May 1988. Numerical
Solutions of Unsteady Inviscid Transonic Turbine Cascade Flows. Major
Professor: Joe D. Hoffman, School of Mechanical Engineering.

A numerical analysis has been developed to solve two-dimensional inviscid

transonic turbine-type cascade flowfields. This analysis combines accuracy

comparable to that of the numerical method of characteristics with the

efficiency of finite difference methods. The MacCormack explicit finite

difference method is used to solve the unsteady Euler equations. Steady

C* solutions are calculated as asymptotic solutions in time. A conservation

variable formulation of the Kentzer method has been developed in this

investigation and is used to derive appropriate equations for the flowfield

boundaries. The Kentzer method is based on characteristic theory, but uses a

finite difference method, consistent with the method used at interior points, to

integrate the appropriate boundary equations. A grid generator has been

developed to create C-type grids around cascade blades using techniques

similar to the Poisson equation grid generation techniques developed by Steger

and Sorensen. Two different planar turbine-type cascades have been studied.

The AACE II cascade blades are typical of the nozzle blades found in the first

stator in a turbine. The GMA 400 cascade blades are typical of later turbine

stator blades. Numerical studies were performed with maximum Mach
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numbers in the flowfields ranging from 0.8 to 1.35. Numerical results are

verified using experimentally measured blade surface static pressure data. A

numerical method of characteristics cascade flow solver has been developed to

provide a relative standard for numerical results. The MacCormack code and

the characteristics code produce very similar results and both are in excellent

agreement with the experimental results.
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SECTION I

INTRODUCTION

The analysis of cascade flowfields has many applications in the fields of

mechanical, aeronautical, and astronautical engineering. The goal of the

present investigation is to develop a cascade flowfield analysis technique which

combines accuracy comparable to the numerical method of characteristics with

the efficiency of finite difference techniques.

o The specific objectives of the present investigation are presented in Section

1.1. Section 1.2 presents the background for this research. The approach

chosen to achieve the stated objectives is outlined in Section 1.3.

1.1 OBJECTIVES

The objectives of the research effort described in this dissertation are:

1. To develop a robust, general grid generator which will create body fitted

C-type grids around two-dimensional turbine nozzle blades using

automatic Poisson-type elliptic grid generation techniques.

2. To develop an accurate and efficient flow solver which will numerically

calculate unsteady, inviscid, subsonic/transonic flowfields through two-

- i, . .. . . .. L0 11ID"FL, - A%
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dimensional turbine-type cascades using the MacCormack explicit finite

difference method and the Kentzer method applied in conservation

variables at the boundaries.

3. To validate the grid generator and the flow solver using high quality

experimental data and numerical results.

1.2 BACKGROUND

Any numerical technique requires some form of discretization of the

flowfield. In order to achieve second-order accuracy, which is desirable for

most engineering applications, the flowfield and boundaries are normally fit

with a body-fitted grid. This grid is transformed into an equally spaced,

orthogonal computational grid. For the current investigation, these

O requirements are achieved using an automatic Poisson-type grid solver to fit a

C-type grid around a typical blade in the cascade being studied. As with any

elliptic grid solver, all boundary locations are specified as Dirichlet boundary

conditions. A technique developed in the present investigation is used, in

conjunction with one developed by Steger and Sorenson [1], to automatically

control grid point distribution in the interior of the flowfield. In addition to

allowing a high level of accuracy, this grid generation technique provides

significant generality since grids can be generated for two-dimensional

cascades of arbitrary camber angle, solidity, and blade shape.

Many flowfields are trisonic, that is they contain subsonic, sonic, and

supersonic flow regions. When evaluated in their steady state form, the Euler

equations are elliptic for subsonic flows, parabolic for sonic flows, and

A' '
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hyperbolic for supersonic flows. Numerically solving steady trisonic flows using

these equations requires careful matching of different numerical techniques for

each flow region. Therefore, a more efficient and more generalized approach

involves considering the entire flowfield simultaneously using the unsteady

Euler equations. In their time dependent form, the Euler equations are

hyperbolic for all three flow regimes. Obviously, this approach provides

unsteady flow solutions directly. Steady flow solutions are calculated as

asymptotic solutions in time. This more general time dependent approach is

used for the present investigation.

The MacCormack explicit finite difference method 12] is used to integrate

the Euler equations numerically. Finite difference techniques are generally

more computationally efficient than other types of numerical techniques. The

MacCormack method is a particularly good method due to its efficiency and its

second-order accuracy in both time and space.

The Euler equations can be solved using either conservation variables or

primitive variables. Both approaches have advantages. For example, the

highly accurate numerical method of characteristics is developed using the

primitive variable form of the governing equations. However, for many finite

difference methods, accuracy, robustness, and efficiency are enhanced by

solving the Euler equations in conservation variables. Conservation variables

are employed in the present investigation.

A technique proposed by Kentzer [3] permits accurate and efficient

calculation of boundary point properties. This technique uses characteristic

. .
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theory to determine the appropriate governing equations at each type of

flowfield boundary. Then, for the sake of computational efficiency, Kentzer

suggests using a finite difference method to solve the resulting set of equations.

In the present investigation, the same finite difference method used at interior

points, the MacCormack explicit method, is also used for boundary point

calculations. Marcum and Hoffman 141 have implemented the MacCo:rmack

method in conjunction with the Kentzer method boundary treatment, using

the primitive variable form of the Euler equations.

Marcum 15] proposed a conservation variable version of the Kentzer

method. This conservation variable development of the Kentzer method is

based on primitive variable characteristic theory, wherein the compatibility

equations are transformed to a conservation variable form. In the present

CI investigation the conservation variable Kentzer method is developed.

Specifically, the conservation variable Kentzer method is used to implement

boundary conditions for the blade surface boundary, the trailing edge point,

the subsonic inflow boundary, and the subsonic exit boundary. Prior to the

present development of the conservation variable Kentzer method, the analyst

who chose to use the Kentzer method was required to solve the entire flowfield

in primitive variables or to inconsistently solve interior points using

conservation variables and boundary points using primitive variables.

11 1 % 4



1.3 APPROACH

The concepts discussed in Section 1.2 are combined to produce an accurate

and efficient numerical solution technique for inviscid turbine-type cascade

flowfields. The resulting MacCormack flow solver is evaluated by calculating

flowfield solutions for two significantly different cascade geometries and by

calculating solutions over the full range of subsonic and transonic Mach

numbers representative of turbine flowfields. These solutions are validated

through comparison with high quality experimental data and with numerical

results obtained by the numerical method of characteristics.

Subsonic and transonic blade surface static pressure measurements are

available for the AACE II [61 and the GMA 400 [71 turbine type cascades.

These results provide an absolute test for the results of the MacCormack code.

The numerical method of characteristics matches numerics to the physics it

models more accurately than other numerical methods. Thus, it provides an

excellent standard of accuracy for other numerical methods. An efficient

inverse marching numerical method of characteristics inviscid cascade flow

solver is developed, as part of the current investigation, to provide a relative

comparison for the MacCormack flow solver.

0
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SECTION II

GOVERNING EQUATIONS

AND COORDINATE TRANSFORMATIONS

This section presents the governing equations for the present investigation

in a variety of conservation variable and primitive variable forms. One

conservation variable form is also shown transformed into strong conservation

form. An expanded discussion of the various forms of the governing equations

Gand the transformation is provided in Appendix A.

II.1 GOVERNING EQUATIONS IN CONSERVATION

VARIABLE FORM

The equations applicable to this research effort are the continuity equation,

the vector momentum equation, the energy equation, and the thermal and

caloric equations of state.

(p)t+ V(pV) = 0 (2.1)

(pV)t + V(pVV)+ VP = 0 (2.2)

(pe)t + V'[V(pe + P) = 0 (2.3)

111 1 1 1 1 6 1 1 1 11" iA A A



T P(2.4)
pR

a (2-- (2.5)

These equations are based on the following assumptions:

1. continuum flow,

2. inviscid flow,

3. no body forces,

4. no heat conduction,

5. simple thermodynamic system, and

C 6. thermally and calorically perfect gas.

Equations (2.1) to (2.3) can be presented in the following short hand

notation.

t = (2.6)

(/'V) t = (2.7)

(pe)t = (2.8)

where 19 , A and F contain the space derivatives appearing in the

continuity, vector momentum, and energy equations, respectively. Written in

vector notation, I , - and 16 are:

= -- XT(/V) (2.9)
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T = - V'(pe +P)] (2.11)

The matrix form of the governing equations is:

Qt+E =+Fy 0 (2.12)

where

F= pv+Q t Ju 2 + P F uv

pe (pe + P)u (pe + P)v

11.2 GOVERNING EQUATIONS IN PRIMITIVE

VARIABLE FORM

The conservation variable form of the continuity equation, equation (2.1),

is expanded to yield the primitive variable form:

D_ + 0  (2.13)
Dt

Expanding equation (2.2) into primitive variables and using the continuity

equation, equation (2.13), to simplify the result yields the following primitive

variable form of the vector momentum equation:

DV
pDV +VP = 0 (2.14)
Dt

@I
: := , , ., s, ' - , '¢ € r, v , ' ,r r .. ' 2 '



The energy equation is used in two different primitive variable forms in

later sections and appendices. Appendix A shows the expansion of equation

(2.3) into both of the following primitive variable forms:

DP a2 D) _ 0 (2.15)
Dt Dt

1 DP V 2 Dp D[ -  '] N72
- +--+)- -- -( ) 7--V) +V- ,P = 0 (2.16),,,- Dt 2 Dt Dt -- 2

11.3 COORDINATE TRANSFORMATIONS AND THE

STRONG CONSERVATION FORM

Coordinate transformations are often utilized in numerical computations to

Simprove solution accuracy. This requires two major steps: the transformation

of the grid covering the physical domain of interest to a uniform orthogonal

computational grid, and the transformation of the governing equations from

the physical domain to the computational domain. The grid transformation is

addressed in Section V and in Appendix E. The transformation of the

governing equations is presented in this section, with more detail afforded in

Appendix A.

11.3.1 COORDINATE TRANSFORMATIONS

Since neither the physical nor the computational grid is time dependent in

the present investigation, derivatives with respect to time are unaffected by

the transformation. iherefore, only space transformations are considered.
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The physical and transformed spaces are related through a one-to-one

correspondence. That is, each point in the physical domain, (x,y), is related to

exactly one point in the computational domain, (I,), and vice versa.

Therefore, the computational space is described by:

= ,(x,y) (2.17)

, = (x,y) (2.18)

or conversely,

x - x(IC , ) (2.19)

y y((,,) (2.20)

Partial derivatives of the generic variable, f = f(x,y), are transformed using

the partial differentiation chain rule:

fy = fIy + f,1/y (2.22)

The terms x, y, , and 71, are the transformation metrics. These metrics are

calculated using the following equations:

= J Y,, (2.23)

= -J y (2.24)

= j x,j (2.25)

71y = J x (2.26)

o AI



where J is the Jacobian of the transformation. By definition J is given by the

following determinant:

C x CJ 11X 71y (2.27)

This determinant is equivalent to the reciprocal of the Jacobian of the inverse

transformation, I. In other words, J F- I-', where

(2.28)

Physically, the Jacobian. represents a stretching function which relates a

differential volume in physical space to that same volume in the transformed

space.

o Since the computational grid in the transformed space is orthogonal and

equally spaced, all the inverse metrics (x,, x,,, yC, y,,) can be calculated

numerically to a high-order of accuracy. As Thompson 18] points out, these

metrics should be numerically approximated in the same manner as the

dependent variables are approximated in the governing equations. For the

MacCormack method, used in the present investigation, the metrics should be

forward differenced for the predictor calculations and backward differenced for

the corrector calculations. This issue is discussed further in Appendix A.

11.3.2 GOVERNING EQUATIONS IN STRONG CONSERVATION FORM

Using the partial differentiation chain rule to transform the space

derivatives in equation (2.12) as shown in equations (2.21) and (2.22) results in

hm JIM
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the following system of equations in weak conservation form.

Qt + ,cE, + ??.E, + yF, + iiyF, = 0 (2.29)

Using a technique developed by Viviand 191 and Vinokur [10], equation (2.29)

can be recast into the strong conservation form:

l1Qt+[I(E~c,+F ,)] +1I(E?,/+F7y)),, = 0 (2.30)

The development of equation (2.30) is presented in Appendix A.

11.3.3 CONTRAVARIANT VELOCITIES

Equation (2.30) contains several groupings of velocity products of the

following form:

U xU + (yV (2.31)

V ---- rxu + ryV (2.32)

Tl(ese groupings are called contravariant velocities. Contravariant velocities

represent transformed velocity components in the directions of the

computational coordinates. Specifically, U represents the velocity component

in the c direction, and V represents the velocity component in the ?/ direction.

Substituting these contravariant velocities into the transformed governing

equations improves computational efficiency. Thus, the strong conservation

law governing equations, with the contravariant velocities incorporated, are:

qt += +f, 0 (2.33)

where

0
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PI(pU) 1(/)V)

- pu- I(/puU + "",P) -- I(PUV' + "NP)
Q Ipv E IGpvU + -P) F - (V jP

Pe I j(pe + P)U] - I(pe +P)VI -

In this research program, equation (2.33) is solved using the MacCorinack

explicit finite difference method to calculate properties at all points in the

interior of the flowfield. The Kentzer method yields similar sets of equations

applicable at the various boundary points.
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SECTION III

THE KENTZER METHOD

Many techniques exist for calculating fluid properties at the boundaries of

a flowfield. At a boundary the physics are described by the applicable

boundary condition equations and the governing differential equations of

motion. Thus, the number of equations exceeds the number of solution

variables and the problem is over specified. Therefore, to incorporate the

GO boundary conditions, some boundary point solution techniques ignore one or

more of the governing equations and, therefore, some important physics.

The Kentzer method 13] combines the boundary conditions and the

governing differential equations of motion into a new set of equations which

includes all the applicable physics yet does not over specify the problem. The

Kentzer method is based on characteristic theory. Characteristic theory is

described in Appendix B and summarized in this section. Detailed

developments of the method of characteristics have been published by

Rusanov [il], Zucrow and Hoffman [12], and Hoffman 1131.

Characteristic theory uses the primitive variable form of the governing

equations. Therefore, up to the present, the Kentzer method has been applied

: ~~~~~I I 11111' 111 1045000r~~, -, ,,,
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using primitive variables. However, a conservation variable form of the

Kentzer method, which was first proposed by Marcum 15], is developed and

applied in the present investigation. This variation of the Kentzer method is

described in this section. The conservation variable Kentzer method is applied

to several boundary conditions in Section IV.

111.1 METHOD OF CHARACTERISTICS

The method of characteristics identifies the physical paths of propagation

of information through a flowfield, which are the pathline and the

wavesurfaces. This identification process is developed in Appendix B. The

results of that development are summarized below.

The governing equations for the present investigation are presented in

G Section I. These equations form a set of hyperbolic partial differential

equations of the first order. In primitive variables they are:

+ p'--0 (3.1)
Dt
DV VP

DV + VP 0 (3.2)
Dt P

DP a2 DP -0 (3.3)

Dt Dt

The goal of the method of characteristics is to form linear combinations of

this set of equations to obtain an equivalent set of compatibility equations. A

compatibility equation is an interior operator which has one less independent

variable, contains derivatives only in the corresponding characteristic surface,
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and is valid only in that surface. A characteristic surface is a surface in the

solution space on which the governing partial differential equations may be

combined linearly to form a compatibility equation.

For unsteady two-dimensional flow there are three independent variables:

(x,y,t). Therefore, the characteristic surfaces are surfaces in three-dimensional

space. The pathline is the intersection of all the stream surfaces containing

the point in space which is under consideration. The waveline is the line of

contact between a wave surface and the Mach conoid. The Mach conoid is

the envelope of all wave surfaces which contain the given point in space which

is under consideration. Two stream surfaces and the corresponding pathline

are illustrated in Figure 3-1. A Mach conoid, a wave surface, and the

corresponding waveline are illustrated in Figure 3-2.

oThere are two types of compatibility equations corresponding to the two

types of characteristic surfaces: the pathline equation and the waveline

equation. The pathline equation is the energy equation in primitive variable

form, equation (3.3), which is repeated here for convenience.

DP __2 PL -0  (3.4)
Dt Dt

D( )is the substantial derivative, which is the directional derivative along the

Dt

pathline. As demonstrated in Appendix B, the waveline equation is not as

simple. The waveline equation is formed as a linear combination of equations

(3.1) to (3.3), which reduces to:

S
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y

STREAM SURFACES

Figure 3-1. Stream surfaces and corresponding pathline.
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, -WAVELINE

WAVE //,7 MACH

SURFACE CONOID

NORMALVECTOR

Figure 3-2. Mach conoid, wave surface and corresponding waveline.

0
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pan'- +,.a 2 I vvi(fi')v] - 0 (3.5)

where -O is the directional derivative along the waveline. The term in

brackets contains derivatives in the corresponding wave surface which are

called cross derivatives.

The pathline equation, equation (3.4), is valid on the pathline. The

waveline equation, equation (3.5), is valid on the wave surface corresponding

to the wave surface unit normal vector, fi. There are an infinite number of

choices for the wave surface unit normal vector fi corresponding to the infinite

number of wave surfaces at a point. However, only four compatibility

equations can be included as a set of independent equations for unsteady two-

dimensional flow. The pathline equation must be included since it is the only

compatibility equation which contains a derivative of density. Consequently,

three and only three waveline equations can be used independently for

unsteady two-dimensional flow.

111.2 THE KENTZER METHOD IN CONSERVATION

VARIABLES

As shown above, characteristic theory uses the primitive variable form of

the governing differential equations of motion to derive the pathline and

waveline equations. Therefore, the Kentzer method has historically been

applied in primitive variables. However, a conservation variable form of the

Kentzer method is developed and applied in the present investigation.

V[
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is The conservation va:iable form of the governing equations written in vector

notation, equations (2.6) to (2.8), are repeated here for convenience:

= (3.6)

(PV) t= (3.7)

(pe)t (3.8)

where

,=-v(PV) (3.9)

= - -(pVV) - VP (3.10)

V/ =V-[V(pe + P) (3.11)

C A linear combination of these conservation variable governing equations

produces the conservation variable form of the pathline equation, which

reduces to:

a' -1 -'(pV)t+ (,e)t = -a -V. /a +W (3.12)

In a similar manner, a linear combination of the conservation variable form

of the governing equations produces the conservation variable form of the

waveline equation, which reduces to:



2]

I.r.

v2  +a, 'V Pt V aa "i(jV)t + (p~e)t ]
2 ] - -I I.

Appendix C demonstrates the mathematical equivalence of the primitive

variable and the conservation variable compatibility equations. While these

two sets of equations are mathematically equivalent, only the primitive

variable compatibility equations can be used to construct a numerical method

of characteristics, because only the primitive variable equations are made up

solely of derivatives which lie in characteristic surfaces. However, since the

Kentzer method uses finite differences to solve the boundary point equations,

either set of compatibility equations is acceptable.

By applying the Kentzer method to these conservation variable

compatibility equations, the appropriate set of conservation variable equations

is derived for each type of boundary being considered. At boundary points,

the governing equations, equations (3.6), (3.7), and (3.8), are replaced by the

pathline equation, equation (3.12), and the waveline equation, equation (3.13),

applied in three independent wave surfaces. Depending upon what type of

boundary is being considered, one or more of these compatibility equations are

replaced by boundary conditions. Since each compatibility equation contains

all the physics described by the governing equations, all the appropriate

physics is included in the equations produced by the Kentzer method.

At interior points, the same set of compatibility equations could be used,

but they reduce to the original set of governing differential equations of
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motion. It is only when one or more boundary conditions replace one or more

of the compatibility equations that the resulting set of applicable equations

differs from the original governing differential equations of motion.

At every boundary point, the resulting equations are solved by the same

numerical method used at interior points. For the present investigation, that

method is the MacCormack explicit forward-backward finite difference method.

111.3 UNIT NORMAL VECTORS

In order to implement the boundary point equations, a local coordinate

system is established at the boundary point. The local boundary coordinates

are defined by b and , where b is the unit vector normal to the boundary and

E is the unit vector tangent to the boundary.

Ie At any given point, an infinite number of wave surfaces exist which could

be chosen for application of the waveline equation. Since only three waveline

equations are considered at each boundary point, the wave surface unit

normal vectors, fly, fi2 , and fi3 , are chosen such that they are equally

distributed and aligned with the boundary at the point being considered. The

fil wave surface unit normal vector is chosen to be equal to the boundary unit

vector, b. Thus, in terms of the unit vectors b and E, the three wave surface

unit normal vectors are defined in the following manner:

fi b (3.14)

n2 2 1 (3.15)

m II
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fl3 - - (.6
f3 2 b-2 (6

AJ] five of these unit vectors, b, E, fii, hfl and h3, are shown at three

boundary point locations on a C-type grid in Figure 3-3.

C
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SECTION IV

UNIT PROCESSES

Several unit processes are employed in the computation of cascade

flowfields. Each of the following types of flowfield points must be considered:

1. interior points,

2. solid wall boundary points,

3. trailing edge point,

4. subsonic inlet boundary points,

5. subsonic exit boundary points, and

6. supersonic exit boundary points.

All periodic boundary points and grid cut points lie in one of the regions

listed above. Therefore, no additional sets of equations are required to

compute these points. However, because of their location on the

computational grid, they do require special handling of indices.

This section summarizes the MacCormack method and the results of the

Kentzer method unit process development for each of the flow regions listed

above. The Kentzer method is discussed in Section III. Appendix D presents

1 1 , 1 1 1 1 , 1 1
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each of the unit process developments in detail.

The equations derived in this section are presented in terms of physical

domain (x,y,t) derivatives. Prior to their implementation, these equations are

transformed to computational space. At the interior points the governing

equations are transformed into the strong conservation form as shown in

equation (2.33). At the boundaries the transformed equations consists of the

same groupings of space derivatives transformed into strong conservation

form, however, these derivative terms have coefficients which are not affected

by the transformation. Therefore, the boundary point equations are in a

weak conservation form.

At interior points the Euler equations apply. Those equations are repeated

here for convenience:C
(P)t = (4.1)

(pV)t = (4.2)

(pe)t = (4.3)

where 1, Jf , and F contain the space derivatives appearing in the

continuity, vector momentum, and energy equations, respectively. Written in

vector notation, C, A , and if are:

(6 V'(pV) (4.4)

= - V(pVV)- VP (4.5)

° sm
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-- [V(pe+P) (4.6)

At all boundary points, the Kentzer method is used to determine the

appropriate set of equations to be solved. At all interior and all boundary

points, the space derivative terms 6, /t , and 9 appear. In addition, at all

interior and all boundary points, the MacCormack explicit finite difference

method is used to discretize the appropriate equations.

1V.1 THE MACCORMACK METHOD

The MacCormack explicit finite difference method [2 is used in this

investigation to calculate the flowfield solution. This predictor-corrector

method is second-order accurate in time and space.

oThe transformed governing equations in matrix form are presented in

Section 11.3.3 and are repeated here for convenience:

qt + E4 + F,1 0 o(4.7)

where

P I(pU) I(pV)

pu I(puU + ' P) - I(puV + ?1P)
Q=I E I(PVU+Y I(pvV + ryP

t pe - I[(pe + P)U t I[(pe + P)V J

The two steps of the MacCormack method can be summarized, for the

present investigation, by the following equations. The predictor space

derivatives are all computed using current time level property values:

0
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=i -At, [ijF ['E4 +F[~ (4.8)

The corrector space derivatives are all computed using forward time level

property values:

'jn.+ Q.n. - At jj[B [](I +--  B n -  (4.9)

To achieve second order accuracy in time and space, the results of these two

steps are averaged:

QiD+] 1 ~ (4.10)
l =2 Qi Q 1

Efficiency is improved by combining equations (4.9) and (4.10) in the following

manner:

"Qml+ I Q = . + At Jij {B (E ) J B (F ,,)1'}] (4.11)

As shown in equations (4.8), (4.9), and (4.11), F( ) are first-order forward-

difference operators and B( ) are first-order backward-difference operators.

Those operators are:

4-_

F~l )in 1+- j ( Il ij

(F .+17 F!.
(F0(1,~n j i~j~l - i
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- nET _ --'[ n+T

Ili

B(F, -,,) .+"r

By incorporating the forward-difference operators, the MacCormack predictor

equation, equation (4.8), applied to the transformed governing equations in

matrix form becomes:

.- T -[ED -E,. F'+ j (412

j = Q'j - At Jij A + A + (4.12)

Similarly, by incorporating the backward-difference operators, the

MacCormack corrector equation, equation (4.11), applied to the transformed

governing equations in matrix form becomes:

-- n-'Sinj - EinF-I + Ij
" _+ 0.5 Qi+ qin-AtJij ij + /-r1 ij-1 (4.13)

For the present investigation, all grid spacings on the computational grid are

unity (i.e., A = A71 = 1.0).

At each of the boundaries, one of the forward- or the backward-difference

operations requires flow properties and transformation metrics outside the

flowfield to approximate flow property partial derivatives at the boundaries.

Therefore, first-order or second-order extrapolation is used to approximate

these values outside boundaries. Then the MacCormack method, as described

above, is applied to the appropriate boundary point equations to evaluate

boundary property values.

o.* r* t
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1V.2 INTERIOR POINT UNIT PROCESS

At interior points, the MacCormack method is applied directly to the

transformed governing equations in the strong conservation-law form, equation

(2.33). The resulting finite difference equations, equations (4.12) and (4.13),

are solved at each interior point to determine the solution at the new time

level.

IV.3 BLADE SURFACE BOUNDARY POINT UNIT

PROCESS

In a two-dimensional cascade flow, the surface of the blade forms the only

solid wall boundary. The boundary condition applicable at a free slip solid

boundary point is that the velocity normal to the boundary is zero:

0'V=0 (4.14)

To determine the applicable equations at the blade surface boundary point,

the governing equations, equations (4.1) to (4.3), are replaced by compatibility

equations, equations (3.12) and (3.13). The waveline equation, equation (3.13),

is applied in three wave surfaces corresponding to the wave surface unit

normal vectors, fll, :62 , and fig, given by equations (3.14) to (3.16). Since the

boundary condition, equation (4.14), must be incorporated, the waveline

equation corresponding to vector fil (which was intentionally placed outside

the flowfield) is replaced by the boundary condition. This situation is

illustrated in Figure 3-3. The applicable equations at a solid wall boundary

point are the boundary condition, equation (4.14), the pathline equation,
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equation (3.12), and the waveline equation, equation (3.13), applied in the

remaining two wave surfaces corresponding to wave surface unit normal

vectors f12 and fi3. Thus,

0 (4.15)

-§j~t-V.(PV)t+(Pe)t= v25 a2 V(±~(.6

0!

Ipt -- - ( - V. + +F (4.16)

2 + Pt- + (e- 2 " - (pe)t
a +2" VaI "

+ - Pt- V+- "f3(pV)t+ (pe)t

2 ^- 1I "- 1- I

V a+3 V a3J (4.18)
2-- -- 1 - f- I" +  (41)

Equations (4.15) to (4.18) comprise an appropriate set of equations for the

solid wall boundary point. However, these equations are unnecessarily

complicated. Equations (4.16) to (4.18) each contain more than one time

derivative. These four equations can be rearranged into a form which is

simpler and more computationally efficient to solve by a finite difference

11Ii
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method. That rearrangement results in the following set of equations:

Pt + 2ab~f (4.19)

[2a]

PV - P (4.21)

(pe)t - + + 2(a-1) (g " . ) (4.22)

Equations (4.19) to (4.22) are solved at each solid blade surface boundary

point to determine the solution at the new time level.

0 The MacCormack method backward corrector calculations require

predicted property values one row of grid points inside the solid boundary.

This is achieved by extrapolating predicted values from the flowfield. Both

linear and quadratic extrapolations have been used at the blade surface during

the current research effort. With either approach some explicit smoothing is

required to stabilize the solution. Using linear extrapolation produces good

results. When quadratic extrapolation is used the smoothing requirement is

increased to such an extent that some significant flow features are smeared

out. Therefore, linear extrapolation is used at the blade surface boundary

points in the present investigation.

0
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IV.4 TRAILING EDGE POINT UNIT PROCESS

In the inviscid cascade flowfield, the Kutta condition is enforced at the

trailing edge of the cascade blade. Specifically, the flows leaving the two sides

of the blade surface at the trailing edge are forced to flow parallel to each

other in a direction such that the static pressure is equal on the two sides of

the trailing edge point.

In the present investigation, the requirements listed above are enforced by

installing a small imaginary solid wall segment which is hinged at the trailing

edge point. The flow on each side of the hinged wall segment is solved

independently, in a manner similar to the technique described in Section IV.3

for the solid blade surface point. By forcing the flow on both sides of the wall

segment to follow the wall, the flows on the two sides of the trailing edge a-e

C forced to be parallel to each other.

After solving for the flow properties on each side of the hinged wall

segment independently, the pressure difference between the two sides is

compared. If the difference is not equal to zero, to within a specified

tolerance, a zero finding secant method is used to correct the wall orientation

(flow angle) toward the angle where the pressures will be equal. This

procedure is iterated until the pressure difference between the pressure and

suction sides of the blade, at the trailing edge, is approximately zero.

As mentioned above, the flow on each side of the imaginary hinged wall

segment is solved in a manner similar to the grid points which lie on the

remainder of the blade surface. However, because the imaginary wall segment

0V
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is not stationary, but instead is allowed to pivot, the local coordinate systems,

set up on each side of the wall at the trailing edge points, also pivot. This is

illustrated in Figure 4-1.

Throughout the trailing edge point unit process derivation, unless otherwise

specified, the local coordinate system unit vectors, b and E, are defined with

respect to their orientation at the forward time level, that is, the time level of

the predicted and corrected properties. Therefore, unless otherwise specified,

during the iterative solution process, b is aligned perpendicular to, and E is

aligned parallel to the hinged wall segment at the angle the wall is assumed to

be at, at the forward time level, during that iteration.

The boundary condition applicable at the trailing edge point's imaginary

hinged wall segment is that the velocity normal to the wall segment, at the

O hinge, at the new time step, is zero.

b-V = 0 (4.23)

To determine the applicable equations at the trailing edge point, the

governing equations, equations (4.1) to (4.3), are replaced with compatibility

equations, equations (3.12) and (3.13). The waveline equation, equation (3.13),

is applied in three wave surfaces corresponding to the wave surface unit

normal vectors, ill fil, and fis, given by equations (3.14) to (3.16). Since

fil = b, the waveline equation corresponding to vector fil extends beyond the

hinged wall segment and therefore, does not affect the flow on the side of the

wall under consideration. As at the blade surface boundary condition, the 'l

waveline is intentionally placed outside of the flow and is replaced by the
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Unit vectors at current
time level

.... " Unit vectors adjusted to
new flow direction

Suction side flow

Pressure side flow

suctonsucton

Figure 4-1. Trailing edge point unit vectors and flow directions.
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boundary condition, equation (4.23). Thus, the applicable equations at the

trailing edge point are the boundary condition, equation (4.23), the pathline

equation, equation (3.12), and the waveline equation, equation (3.13), applied

in the remaining two wave surfaces corresponding to wave surface unit normal

vectors fi2 and fi3. Thus,

0 (4.24)

v2 aa
- , ]Pt-- V(V)t+ (e)t -V- +W (4.25)2 ,- -- (V +p) 2 ,- -l

fi2 ] Pt- + afi A P~2 --1 I--1 I

V2 + W _- V+ -. +a (.22

- + 1 _ V- [+aIiR3 + (4.27)

Equations (4.24) to (4.27) comprise an appropriate set of equations for the

flows on the two sides of the hinged wall segment (trailing edge point).

However, these equations are unnecessarily complicated. Equations (4.25) to

(4.27) each contain more than one time derivative. These four equations can

II 1 1 P
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be rearranged into a form which is simpler and more computationally efficient

to solve by a finite difference method. That rearrangement results in the P

following set of equations:

t (C + 6[.(pV)t- (4.28)
l,.V-2a

Xj~ +g + Ji(u

(pu)t c (4.29)

(c i

PV -- u (4.30)

(pe)t + . + {2a - V (4.31)

where g = (u - 2abi)/(v - 2abj). In the denominator of equation (4.29), the E

vector is parallel to the hinged wall segment at the current time level for the

predictor calculations, and is parallel to the hinged wall segment at its

assumed position at the forward time level for the corrector calculations. For

both steps, the temporal derivative of the ratio of the E components is equal to

the ratio at the forward time level, minus the ratio at the current time level,

all divided by the time step.

Equations (4.28) to (4.31) are solved on each side of the imaginary hinged

wall segment located at the blade trailing edge to advance the solution in

... N .
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time. The solution process is iterated, changing the flow angle at each

iteration until the pressures on the two sides of the trailing edge are equal to

within a specified tolerance. For the results presented in Section VII, a

tolerance of 10- 6 was used to evaluate convergence of the pressure difference

normalized by the inflow total pressure.

The same set of equations must be solved at the predictor and the

corrector steps of the MacCormack method. Therefore, the flow angle, and

the corresponding forward time level definitions of b and E, must be the same

for both steps. This constrains the iteration sequence to include both the

predictor and corrector steps. Therefore, all points on the C-grid except the

trailing edge point are predicted, next the trailing edge point is iteratively

predicted and corrected, then all remaining points are corrected.

IV.5 SUBSONIC INFLOW BOUNDARY POINT UNIT

PROCESS

When the component of the fluid velocity perpendicular to the inflow

boundary is less than the local speed of sound, the fluid properties at that

boundary are dependent upon both upstream and downstream phenomena. If

the fluid velocity were zero, the fluid properties would be influenced from all

directions equally. When the velocity is not negligible, a greater influence will

be felt from the upstream direction. From a characteristic perspective, this

means that most of the base of the Mach cone (domain of dependence) lies

outside the computational domain at the subsonic inflow boundary.
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At an inflow boundary, one to four boundary conditions can be set. It

would only be appropriate to set four boundary conditions if the flow

component crossing the inflow boundary were supersonic, and therefore, the

flow properties were totally dependent upon the upstream conditions. Setting

three boundary conditions implies that a majority, but not all of the flow

influences are coming from the upstream direction. For the present

investigation three boundary conditions are set at the inflow boundary.

The boundary conditions chosen for the subsonic inflow boundary are those

which reflect the properties of the flow which are most likely to be known

upstream of a turbine blade row. Specifically, the stagnation pressure, P 0 , the

stagnation temperature, To, and the flow angle, 0, are specified as boundary

conditions at the inflow boundary.Jo
To determine the applicable equations at the subsonic inflow boundary, the

governing equations, equations (4.1) to (4.3), are replaced by compatibility

equations, equations (3.12) and (3.13). The waveline equation, equation (3.13),

is applied in three wave surfaces corresponding to the wave surface unit

normal vectors, fil, f12 , and fi3 , given by equations (3.14) to (3.16). At the

inflow boundary the unit vector b is oriented perpendicular to the inflow

boundary and pointing in. Thus, the wavelines corresponding to the fi2 and fi3

vectors and the pathline, which are all outside the computational domain, are

replaced by the three boundary conditions. Only the waveline corresponding

to the fil unit vector is placed inside the computational domain. This

situation is illustrated in Figure 3-3. Thus, the applicable equations at the

subsonic inflow boundary are the three properties, P 0 , To, and 0, and the



40

waveline equation applied along the fil unit vector.

P 0  P 0 i.. (4.32)

T o  - T0,, ,,_ (4.33)

0 3M 0 ,(4.34)

afil

[2+ f--- ]P- [ + ,-].(PV)t +(pe)t

= [ -± a V] [-V+-fi]- +v' (4.35)

Equations (4.32) to (4.35) comprise an appropriate set of equations for the

inflow boundary. In previous unit process derivations, multiple compatibility

equations made it possible to use linear algebra to simplify the applicable

equations prior to implementation. Since only one compatibility equation is

used at the subsonic inflow boundary, it must be computed without

simplification. This means that all the temporal derivatives in equation (4.35)

must be evaluated simultaneously. This is achieved through iteration.

The Mach number, M, is the iteration variable in the subsonic inflow

boundary point unit process. Knowing an estimated forward time Mach

number and the boundary conditions given by equations (4.32) to (4.34),

several additional properties can be computed. In this unit process, the

density, p, the x-direction and y-direction components of momentum, pu and
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pv, and the energy, pe, are needed at the forward time for the iterative

process. Therefore, in terms of known flow properties and the Mach number:

P- PO (4.36)RT° 1 + M 2

2

pu P0 M 2 (4.37)

pv = pu tan(0) (4.38)

0 pe=Po _ 1 1 -- (4.39)"--1 1 + '-1 M2 I + -..._1M2

2 21 ±.

The iterative process used to find property values at inflow boundary

points is described next. For both predictor and corrector steps, the iterative

procedure is initiated by guessing the forward time Mach number at the inflow

grid point being considered. For the first time step, the Mach number guess is

calculated from property values on the initial-value surface. Subsequently the

initial Mach number guess is calculated from current time level property

values. The guessed Mach number is used in equations (4.36) to (4.39) to

calculate guessed forward time values of p, pu, pv, and pe.

@V
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Equation (4.35) is rearranged to solve for the temporal derivative of energy:

(pe)t = V - [. + a" ]Pt- )± [+ a;+ 1 I(v)t- R 1 (4.40)

Temporal derivatives of density and momentum are calculated numerically

using the current and guessed forward time values of these properties. Using

these temporal derivatives and transformed space derivatives, equation (4.40)

is solved for a calculated value of pe. If the calculated and guessed values of

pe are equal, to within a small tolerance, the Mach number guess was correct

and the four guessed forward time property values are the predicted (or

corrected) property values at the new time step. If the calculated and guessed

values of pe are not approximately equal, a zero finding .secant method is used

to home in on the correct Mach number. For the results presented in Section

C VII, a tolerance of 10- 6 was used to evaluate convergence of the energy

difference normalized by the value of the energy at the current time level.

For the predictor step, forward differenced space derivatives are required.

Therefore, quadratic extrapolation is used to approximate property values

outside the computational domain.

IV.6 EXIT BOUNDARY POINT UNIT PROCESSES

Because the component of the flow velocity which crosses the exit boundary

can be either subsonic or supersonic, each exit boundary point must be

checked, at each time step, to determine which unit process is appropriate. At

the exit boundary, the unit vector b is placed perpendicular to the boundary,

pointing outward, as illustrated in Figure 3-3. Therefore, at each exit
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boundary point the quantity -V is calculated and compared to the local speed

of sound, a, to determine whether the boundary point should be handled as a

supersonic or a subsonic exit boundary point.

When the component of the fluid velocity perpendicular to the exit

boundary is less than the local speed of sound, the fluid properties at that

boundary are dependent upon both upstream and downstream phenomena.

Therefore, at least one boundary condition must be applied to the solution

procedure. This situation is discussed in Section IV.6.1.

When the component of the fluid velocity perpendicular to the exit

boundary is greater than or equal to the local speed of sound, the fluid

mechanics at the exit are only dependent upon upstream conditions. From a

characteristic perspective, this means that the base of the Mach cone (domain

of dependence) lies entirely within the computational domain. In this case the

interior point unit process is appropriate at an exit boundary point. This

situation is discussed in Section TV.6.2.

On a C-type grid, the exit boundary is a single straight line with a length

equal to the cascade blade spacing. However, the two ends of the

computational grid ( = 1-constant and = ' = constant grid lines)

make up the exit boundary. This distinction does not affect the derivation of

applicable equations at the, exit boundaries. However, the computations on

these two boundaries must be implemented in a slightly different manner.

Specifically, the numerical approximation of space derivatives in the

direction requires property value extrapolation beyond the exit at the

Qa=.
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predictor step for the -- max boundary, and at the corrector step for the

1 boundary. In both cases, quadratic extrapolation is used.

IV.6.1 SUBSONIC EXIT BOUNDARY POINT UNIT PROCESS

The boundary condition applied at a subsonic exit boundary point is that

the exit static pressure is known:

P = Pexit (4.41)

Because pressure is not one of the four solution variables being computed at

each grid point, the solution procedure at the subsonic exit is iterative.

To determine the applicable equations at the subsonic exit boundary point,

the governing equations, equations (4.1) to (4.3), are replaced by compatibility

Cequations, equations (3.12) and (3.13). The waveline equation, equation (3.13),

is applied in three wave surfaces corresponding to the wave surface unit

normal vectors, il, fi 2, and fi3 , given by equations (3.14) to (3.16). Since the

boundary condition, equation (4.41), must be incorporated, the waveline

equation corresponding to vector fal (which was intentionally placed outside

the flowfield) is replaced by the boundary condition. This situation is

illustrated in Figure 3-3. The applicable equations at a subsonic exit

boundary point are the boundary condition, equation (4.41), the pathline

equation, equation (3.12), and the waveline equation, equation (3.13), applied

in the remaining two wave surfaces corresponding to wave surface unit normal

vectors fi2 and fi3:



45

P Pexit (4.42)

2 ,-- ]ft-V.(PV)t+(Pe)t -[ -1 ] -V. + W- (4.43)

.Y1 + ]Pt- +2" [ . (pe)t2 *  -1 1t +--1 I

= + ±Y-1 I + + (4.44)

C* 2 -- 1 I - -1 

---- , _- -- + -- i 1" -- (4.45)

Equations (4.42) to (4.45) comprise an appropriate set of equations for the

subsonic exit boundary point. However, these equations are unnecessarily

complicated. Equations (4.43) to (4.45) each contain more than one time

derivative. Equations (4.43) to (4.45) can be rearranged into a form which is

simpler and more computationally efficient to solve by a finite difference

method. That rearrangement results in the following set of equations:

P = Pexit (4.46)

0i
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Pt + ( - (4.47)
a V2+ - 2afi-

y-I 2

(PU)t-- A/ i + [(pe)t-9 ] [u-2ab] (4.48)

a 2  (v42

a"+ -2 - 2a 'V
-Y-1 2

(Pv Iftj + (Pe)t- ]e [v - 2abj] (-9
(P)t a .{+ a2 v2 (.9

+ - 2a ,-V
"-1 2

Equation (4.47) is solved for density and equations (4.48) and (4.49) are

solved for the components of momentum at subsonic exit boundary points to

advance the solution in time. The value of (pe)t is determined during the

iterative solution process.

oBased on the perfect gas and no body forces assumptions discussed in

Section II, the static pressure and the total energy are related in the following

manner:

P = (^y-1)[pe - 2 pV 2 1 (4.50)

This static pressure must be the specified pressure at the subsonic exit, Pexit"

The following iterative process is used to calculate the flow properties at

the subsonic exit points. The process is initiated by guessing a value for the

energy, pe, for the new time level. For the first time step, the energy value is

obtained from the initial-value surface. Subsequently, the initial guess is set

at the energy value of the current time level.
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The current time level value of energy and the value of energy guessed for

the forward time level are used to numerically calculate a value for the

temporal derivative of energy. This temporal derivative is used in equations

(4.47) to (4.49) to calculate values for the density and the components of

momentum. These values of density and momentum and the guessed forward

time value of energy are used in equation (4.50) to calculate a value for

pressure. If the calculated value of pressure is equal to the specified exit

pressure, to within a small tolerance, the energy value guess was correct and

the calculated values of p, pu, pv, and the guessed value of pe are the property

values at the forward time. If the calculated value of pressure does not agree

with the specified exit presure, a zero finding secant method is used to home in

on the correct value of pe. For the results presented in Section VII, a

C tolerance of 10-6 was used to evaluate convergence o' the pressure difference

normalized by the inflow total pressure.

IV.6.2 SUPERSONIC EXIT BOUNDARY POINT UNIT PROCESS

At an exit boundary point, when the component of the fluid velocity

perpendicular to the exit boundary is greater than the local speed of sound,

the fluid mechanics at the exit are influenced only by upstream conditions. In

that case the interior point unit process is appropriate. Therefore, the

MacCormack method is applied directly to the transformed governing

equations in the strong conservation-law form, equation (2.33). The resulting

finite difference equations are used to advance the solution in time.

.......
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IV.7 GRID CUT POINTS

All points on the grid cut lie in one of the regions discussed above.

Specifically, the trailing edge of the blade, one exit point and several interior

points make up the grid cut on a C-type grid. Therefore, no new equations

need to be derived for the points on the grid cut. However, two factors

complicate the solutions of all points on the grid cut.

1. Each physical grid point on the grid cut is represented by two

noncoincident grid points on the computational grid.

2. In the computational space, where the calculations are carried out and

where flow property values are stored, there are only grid points in the

positive rl direction from the grid cut. Therefore, the MacCormack

G method corrector calculation can not be carried out without special

indexing.

These issues are resolved for the trailing edge point in Section IV.4.

The interior points are handled as described in Section IV.2 with a few

additional steps included to resolve the problems listed above. For every

= constant grid line intersecting the lower side of the grid cut, the

( max+1-) = constant grid line intersects the same physical location on the

upper side of the grid cut. All grid cut calculations are computed at the

computational grid points which lie on the lower side of the grid cut.

Therefore, the property values at the (c, 1) and ( ,2) grid points are used to

predict the ?? derivatives at the interior points which lie on the grid cut.

Then, the predicted property values at the ( , 1) and ( max+l - ( , 2) grid points

4* F
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are used to correct the y derivatives at the interior points which lie on the grid

cut.

After the property values have been predicted at (k, 1), these predicted

values are transferred to the (max--+1, 1) predictor value storage locations

for use in the ("max-+1-,2) corrector calculations. After the corrector

calculations have been completed, the corrected property values are

transferred to the (cmax+1- , 1) corrector value storage locations.

The exit point which lies on the grid cut is handled as described in Section

IV.6, but, with the same additional indexing steps just described for the grid

cut interior points.

IV.8 PERIODIC BOUNDARY POINTS

All points on the periodic boundary lie in one of the regions discussed

above. Specifically, one exit point and several interior points make up the

periodic boundary on a C-type grid. Therefore, no new equations need to be

derived for the points on the periodic boundary. However, three factors

complicate the flow solutions at the points on the periodic boundary.

1. Since the flow through a cascade is assumed to be exactly periodic, the

property values at each point on the periodic boundary on the lower side

of the grid must be exactly the same values found at the corresponding

grid point on the periodic boundary on the upper side of the grid.

2. In the computational space, where the calculations are carried out and

where flow property values are stored, there are only grid points in the0



50

negative rI direction from the periodic boundary. Therefore, the

MacCormack method predictor calculation can not be carried out

without special indexing.

3. At the periodic boundary grid point adjacent to the inflow boundary,

there are two grid points upstream of this point along 7/ = constant grid

lines. Therefore, a decision must be made concerning how to calculate

the space derivatives at these leading periodic boundary grid points.

The periodic boundary interior points are handled as described in Section

IV.2 with a few additional steps included to resolve the problems listed above.

For every c = constant grid line intersecting the the periodic boundary on the

lower side of the grid, the ((max+l-$.) constant grid line is the

corresponding grid line on the upper side of the grid. All periodic boundary

calculations are computed at the computational grid points which lie on the

periodic boundary on the lower side of the grid. Therefore, the property

values at the (I, 'Iwax) and (max+l- , rlmax-1) grid points are used to predict

the r/ derivatives at the periodic boundary points. Then, the predicted

property values at the (V, ??max) and ( , r/max-1) grid points are used to correct

the qj derivatives at the periodic boundary points. After the corrector

calculations have been completed, the corrected property values are

transferred to the ( max+-,1~, /max) corrector value storage locations.

The special periodic boundary points which lie adjacent to the inflow

boundary are handled as discussed above with one additional consideration.

Both predictor and corrector space derivatives are calculated entirely on the

Whp.k.Upt0ll
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?I - ?/max = constant line on the lower side of the C-grid. In other words,

property values at ( , timax) and ((+l, r/max) are used to calculate the predictor

space derivatives at ( ,7/max)" Therefore, property values at ( max- , 1/max)

are not used to approximate property derivatives at this special point.

The exit point which lies on the periodic boundary is handled as described

in Section IV.6, but, with the same additional indexing steps just described for

the normal interior points which lie on the periodic boundary.

9W

wl
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SECTION V

GRID GENERATION

Two of the major problems facing an analyst when constructing the

numerical solution of partial differential equations are: the numerical

implementation of the boundary conditions along the boundaries of the

physical space, and the selection of the finite difference mesh to represent the

continuous physical space. The boundaries of the physical space do not

generally lie along coordinate lines formed by an equally spaced orthogonal

grid system. When first-order accuracy is acceptable, boundary conditions can

be implemented along arbitrary lines in the physical space and/or

computations can be carried out on variable meshes. However, when higher-

order accuracy is necessary, the above factors present serious difficulties. This

has led to the extensive use of coordinate transformations to map the

boundaries of physical space onto coordinate lines of a transformed space and

to map nonuniform, nonorthogonal grids in physical space into uniform,

orthogonal grids in transformed space. Once computational and physical grids

have been generated, the numerical solution is implemented using the

appropriate transformed governing equations.

~ ~q~* ~~*bv~ .w~v~~ \~ -- v '
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In this section the elliptic partial differential equation grid generation

method chosen for the present investigation is discussed. More details are

provided in Appendix E. Information describing the transformation of the

governing equations is presented in Section II and in Appendix A.

V.1 POISSON-TYPE CASCADE GRIDS

In this research, a Poisson-type elliptic partial differential equation grid

generator is used to generate physical grids around cascade blades. Poisson's

equation, applied to the generic variable f(x,y), is presented in equation (5.1).

7"f = f.. + f, = F(x,y) (5.1)

When multidimensional grids of this type are generated, one Poisson equation

is used for each space dimension.

CFor a two-dimensional Poisson-type grid generator, the following Poisson

equations must be solved numerically:

=,XX+ cY =p (5.2)

/ = ~XX + 'rjyy Q (5.3)

where P and Q are the nonhomogeneous source terms. The freedom to specify

these source terms in each Poisson equation provides the capability to control

the relative point distribution in the interior of the grid. For example,

coordinate surfaces can be clustered near a solid boundary or near an inflow

boundary. This capability, as it has been applied in the present investigation,

is discussed in more detail in Section V.2.0
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Figure 5-1 is an example of the C-type grids used in the present

investigation. Additional examples are presented in Appendix E. The name

is descriptive of the shape of each of the members of the family of grid lines

that surrounds the blade.

Solving equations (5.2) and (5.3) numerically would be simple il" the

computations could be carried out on the physical grid. Unfortunately, due to

unequal spacing in this grid, only first-order accuracy can be achieved using

this approach. Therefore, the Poisson equations are transformed to the

equally-spaced orthogonal computational domain and solved there. The

transformed Poisson equations are:

-2Sx, + 'x,,, = .-12(px. + Qx) (5.4)

ay, - 23y ,, + y,/,, = -1 2 (py, + QY,,) (5.5)

C
where I=xy,,-x,,y, is the Jacobian of the inverse transformation and

2 2
XI,'x + Y,1

/3 xxj + y~y,

2? 2
, + ye

For the C-type grid, all boundary point locations are specified as Dirichlet

boundary conditions as described in Appendix E. A modified successive over-

relaxation (SOR) technique is used to solve equations (5.4) and (5.5), thereby

locating the interior points. Like a normal SOR procedure, the iterative

corrections at each point are over-relaxed. However, corrections to the values

@I
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Lie

Figure 5-1. C-type grid for the AACE 11 cascade blade.



56

of the nonhomogeneous terms, P and Q, are under-relaxed each iteration. A

description of these nonhomogeneous terms is presented next.

V.2 CONTROL OF GRID GEOMETRY NEAR

BOUNDARIES

For the grids generated to support this investigation, the nonhomogeneous

terms in the Poisson equations are used to control grid geometry based on the

features of the grid at the i/ = 1 and 71 = ijmax boundaries. Specifically, along

the blade surface, grid cut, and inflow boundaries, the following two features

are controlled:

1. Grid line spacings from points on the inner and outer boundaries to the

corresponding points on the first grid line inside each of these boundaries

are specified.

2. Intersection angles between these same boundaries and the " = constant

grid lines intersecting them are specified.

Similarly, along the periodic boundaries the following two features are

cnLrolled:

1. Grid line spacings from points on the inner and outer boundaries to the

corresponding points on the first grid line inside each of these boundaries

are specified.

2. Slope of the = constant grid lines in the physical plane where they

cross the periodic boundaries is specified. The slope used is the tangent

of the cascade stagger angle.

-U X I'm
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By dictating these specific grid features, grid point locations throughout

the interior of the grid are controlled.

V.2.1 GRID CONTROL AT BLADE SURFACE, INFLOW, AND GRID CUT

BOUNDARIES

Steger and Sorenson III have developed techniques to implement the

controls described above. Some modifications to their method have been

developed for this research effort.

Equations (5.4) and (5.5) are solved for Pb and Qb, which are the P and Q

values on the T! = 1 and q = 11max boundaries.

Pb= J(y,,Ri - x,,R2 )[, (5.6)

GQb =J(-yRl + x R2) (5.7)

where

R= -J 2 ((x,, - 2x,, + 3k x,,,.

R 2 = -j 2((y - 2 3 y4,, + V, .1

Values of Pb and Qb are calculated at each point on each of the il = constant

boundaries using equations (5.6) and (5.7). Since all points on both of these

boundaries are specified, x(, yc, xc, and y are calculated from input data.

The key to Steger and Sorenson's method is their evaluation of x,, and y,,.

They derive expressions for x,, and y,, by first considering the desired offset

distance, AS, which is the distance in the physical space from the boundary

- p



58

point, along a c = constant grid line, to the corresponding point one grid line

inside the boundary. Thus,

AS = [(,X) 2 + (Ay) 2 1 [ = constant (5.8)

In the limit:

dS = [(dx)2 + (dy)2 ] = constant (5.9)

From the partial differentiation chain rule,

dS [(xd + x,,di7) 2 + (y~d + ydr )2] '1 [constant (5.10)

Since dS/dr represents the distance between two points on the same

constant line, d" = 0. Therefore, equation (5.10) reduces to:

dS [(x,)2 + (y,,) 2[ '1 constant (5.11)

The second grid geometry control feature which Steger and Sorensen

address is the grid line intersection angle at the periodic boundary. This

control is implemented using the vector dot product:

= v f 11171 coso (5.12)

where 0 is the desired intersection angle (0 = 90 yields orthogonal grid line

intersections). Equation (5.12) is the definition of the dot product of the

vector normal to the - constant grid line with the vector normal to the

? ? constant grid line. Carrying out the vector arithmetic and incorporating

the transformation metrics ( = JY,,, y = -Jx,, r = -Jy , and l = Jx)

into equation (5.12) yields:
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xrx,, + y~y,, = -1(x, + yl)(X. + y2))"" cosa (5.13)

Solving equations (5.11) and (5.13) simultaneously to determine the necessary

values of x,, and y,, required to meet these two conditions yields:

dS (-xlcosH - y~sinO)
x (x -(5.14)

dS ( e-y cos + xsin6)
= d,! (x.c + y2)if (5.15)

Both 9 and dS/di, are input discretely as functions of " on each of the

i1 = constant boundaries. Once the values of x,, and y,, on the boundaries are

known, the cross derivatives xe,, and y,, needed in equations (5.6) and (5.7) are

calculated numerically by differencing x, and y,, with respect to . Therefore,

A the only remaining unknowns on the right-hand side of equations (5.6) and

(5.7) are x,,,, and y,,,,. The approach used by Steger and Sorenson is to

numerically calculate x,,, and y,,,, during each SOR iteration.

Once all the necessary derivatives have been determined, Pb and Qb are

calculated using equations (5.6) and (5.7). For the sake of stability, Pb and Qb

corrections are severely under-relaxed during each SOR iteration.

In order to smoothly propagate the P and Q effects throughout the grid,

these quantities are exponentialiy extrapolated into the interior of the grid

using equations (5.16) and (5.17).

P(c,r) = P(l,) ea( ' -1)/( ' "n ' - ) + P(2,rlmac) e-b(. (5.16)
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0 ( ,r) = ( ,1 -c ' -' / ''''-)+ Q( ,I a) e d" " -)( ': -) (5.17)

The terms a = a({), b = b(,), c = c('), and d = d(") are positive decay rates

used to control the exponential decay of the P and Q effect into the interior

of the grid. Equations (5.16) and (5.17) differ slightly from those developed by

Steger and Sorenson I1 in that the exponents have been normalized by

(7/max--). A zero finding secant method is used to home in on the appropriate

decay rates at each value of " on each of the ti = constant boundaries. Since

the theory behind this technique is developed in the limit of infinitely small

space increments, but is applied to a finite size grid, the exact grid control

requested will be approached, but not achieved exactly.

V.2.2 GRID CONTROL AT PERIODIC BOUNDARIES

0A variation of Steger and Sorenson's technique has been developed during

this investigation for the periodic boundaries of the cascade grid.

By forcing the 1 = constant grid lines to cross the periodic boundary at the

cascade stagger angle, -, unnecessary grid line skewness is avoided. Since this

constant grid line slope control is more appropriate along the periodic

boundary than L = constant grid line intersection angle, the following

equations replace equations (5.14) and (5.15):

x,1 = d sin(y) (5.18)

=dS cos(-y) (5.19)

0

1 d77
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SECTION VI

SOLUTION PROCEDURE

In the present investigation, the flowfield solution procedure consists of

three major steps. First, grid points are placed around the boundary of the

C-type grid. Second, the Poisson-type grid solver is used to locate all interior

points. Third, the MacCormack flow solver is used to determine properties

throughout the flowfield. The boundary point placement procedure and the

grid solution procedure are described in Section V and in more detail in

Appendix E. The flow solver solution procedure is described in this section.

The steady state fiowfield solution is calculated as the asymptotic time

dependent solution. Prior to the first time step, an initial property value

surface is esLablished. The calculation of initial property values is discussed in

Section VI.1.

Because the grid is stationary, transformation Jacobian and metric values

are calculated once, prior to the first time step, and used at every time step.

As demonstrated in Appendix A, in order to avoid erroneous source terms,

transformation metrics must be differenced in the same manner as property

derivatives are differenced. Therefore, one-sided forward-differences are used

to calculate metric values used in predictor calculations, and one-sided

!1 1 1
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backward-differences are used to calculate metric values used in corrector

calculations. Centered-differences are used to calculate Jacobian values for

both steps of the MacCormack calculations.

VI.1 INITIAL-VALUE SURFACE

Prior to beginning the time stepping procedure, property values are

assigned to each grid point in the flowfield. The closer these initial values are

to the final, steady state solution, the quicker the solution will converge to the

steady state. Property values are first assigned on all the computational

boundaries, in accordance with the appropriate boundary condition

constraints. Values for the interior points are then interpolated from the

boundary values.

The inflow total pressure and the exit static pressure are used to compute

an approximate exit boundary Mach number, and in turn, the velocity

magnitude at the exit boundary. The inflow total temperature, total pressure

and the exit Mach number estimate are used to calculate the exit boundary

density and total energy. The velocity components are specified by assuming

the flow to be parallel to the grid cut at the exit boundary. Momentum

components are the product of the respective velocity components and the

density. All points on the exit boundary and on the grid cut, including the

trailing edge, are set to these exit boundary property values.

The x-direction velocity component on each point on the periodic and

inflow boundaries is assumed to be equal to the value of u calculated for the

exit boundary. On the periodic boundary, v is then specified by assuming the
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flow to be parallel to that boundary. On the inflow boundary v is set in

accordance with the input inflow angle. Using the velocity magnitude and the

inflow total properties, the Mach number is calculated at each point on these

two boundaries. Then using the Mach number and the total properties, the

density and energy are calculated at each point.

On the blade surface, the x-direction component of velocity is agaili

assumed to be equal to the exit value except at the leading edge where a

stagnation region is specified. The y-direction component of velocity is then

assigned so that the velocity is everywhere parallel to the blade surface. The

density and total energy are then determined as described above.

Once all relevant property values have been calculated at all boundary

points, interior point values are determined by interpolating, between

boundaries, along --constant grid lines.

VI.2 TIME STEPPING PROCEDURE

The flow solver time stepping procedure consists of smoothing the property

values at the current time level, calculating the appropriate time step at every

grid point, predicting and correcting solutions to the inviscid flow equations

which are appropriate for each point, and testing the solution for convergence.

As described in Section IV.4, both the predictor and the corrector

calcuiations are included in the iterative process at the trailing edge point.

Therefore, to advance the solution in time, the following sequence is

established. All points on the grid, except the trailing edge point are

Sft
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predicted. Then the trailing edge point is iteratively predicted and corrected.

Finally, all remaining points are corrected. This process is repeated,

advancing the solution in time, until convergence has been achieved at all grid

points, to within a specified tolerance.

VI.2.1 TIME STEP CALCULATION

The magnitude of the time step used to calculate properties is regulated by

the Courant Friedrichs Lewy (CFL) stability criterion 124]. Enforcing the CFL

restriction insures that the domain of dependence of the partial differential

equations (the Mach cone) falls within the domain of dependence of the finite

difference equations (the convex hull). The convex hull for the MacCormack

method is outlined with bold lines in Figure 6-1.

QIn the present investigation, a conservative approximation is used to

estimate the CFL limit which is appropriate for each grid point. At each

point, the distance between the point and the nearest point on the convex hull

is calculated. Since the grid is stationary, the minimum distance

corresponding to each grid point is calculated once, stored, and then used each

time the time step limits are recalculated. The velocity vector is assumed to

point away from the closest point on the convex hull. Based on this

assumption, the desired time step limit is:

d

AtCFL = d (6.1)
i+ahb

where d is the shortest distance to the convex hull boundary, lis the

@ I,
- A,4
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77q

Figure 6-1. The two-dimensional MacCormack method convex hull.
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velocity magnitude, and a is the local speed of sound.

The local CFL time step limit can be calculated and used at each grid

point. This local time step procedure produces a stable and rapidly

converging solution. However, the transient is not accurate with respect to

time since different time steps are applied at each grid point. In order to

achieve a stable and time accurate solution, the smallest time step calculated

for any point on the grid (global time step) must be used at every point on the

grid to advance the solution in time. Both options are available in the codes

developed in the present :.nvestigation.

In order to provide the flexibility to limit the time step further, time step

multiplying factors are used. Two time step multiplying factors are input.

Generally the initial time step multiplying factor, with a value around 0.7, is

used to promote stability for the potentially rough initial-value surface. A,-,

a specified number of time steps, a time step multiplying factor of around 1.0

is substituted and used to advance the solution to convergence.

Because the properties in the fiowfield are changing, the CFL limit at each

grid point changes in time. Since a conservative CFL estimate is being used,

computational effort is reduced by updating the time step limits after several

(usually 5) time steps, rather than after every time step.

V1.2.2 EXPLICIT SMOOTHING

A numerical solution to the unsteady Euler equations can be limited by

stability considerations. In other words, if the numerical solut*ion to a set of

.WO
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unsteady partial differential eq," +ions diverges rather than predicting a

bounded solution to the equations, no useful information is derived.

As discussed in the previous section, a stability analysis for a particular

numerical method applied to a particular set of partial differential equations

produces a time step limitation which, if exceeded, will lead to divergence.

Unfortunately, common stability analysis techniques only predict the stability

criterion applicable to a simplified linear model equation in the absence of the

boundaries of the computational domain. Therefore, even when the calculated

stability restrictions are enforced, instabilities can still occur. In particular,

when numerically solving the Euler equations, nonlinearities in the equation

formulations, various boundary condition implementations, and flow solution

phenomena such as shock waves and stagnation points, often cause numerical

instabilities. Explicit artificial dissipation, or smoothing, is usually applied to

overcome these instabilities. An extensive discussion of artificial dissipation is

provided in Appendix F. The specific smoothing techniques used in the

present investigation are summarized here.

The current research effort employs a conservation variable form of the

Kentzer method at the flowfield boundaries and the MacCormack method

throughout the flowfield. This combination requires some explicit dissipation

to avoid divergence. Specifically, the blade surface boundary appears to

generate instabilities. However, when a small amount of smoothing is applied

over the majority of the grid, excellent results are achieved.
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The general formula used to smooth each of the four dependent

conservation variable properties p, pu, pv, and pe, is:

fsmoothed = f + -t C2 [sf 2 f6 sfr, f,,,, ] (6.2)

where f is one of the solution properties, At is the time step, c2 is a property
'

independent variable coefficient, and sfc2 and sf?12 are grid dependent scaling

factors.

All the smoothing terms in equation (6.2) are multiplied by the time step.

This causes the smoothing to be scaled at the same magnitude as the space

derivatives in the Euler equations. In addition, if local time steps are being

used rather than global time steps, multiplication by the time step will cause

more explicit artificial dissipation to be added where larger time steps may be

Aallowing instabilities to grow faster.

The property independent coefficient, c2 , sets the magnitude of the

smoothing for the entire flowfield. In order to keep a rough initial-value

surface from diverging and yet avoid excessively smearing the final solution,

this coefficient is linearly decreased in time. The upper and lower limits of c2

are input along with a multiplying factor which is set to approximately 0.999.

At each time step, the value of c 2 is multiplied by this factor until the lower

limit of c2 is reached. At all subsequent time steps c 2 is maintained at the

lower limit. %

The grid dependent scaling factors, sf, 2 and sfij 2, are used to efficiently

correct unwanted, grid dependent scaling of the dissipation derivatives, f7 and

-
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f,,,,' Without these factors, the dissipation derivatives have less of an effect in

areas of the physical grid where grid points are densely packed than in areas

where grid points are sparse. It is desirable to eliminate this effect without the

added computational effort of computing transformed physical derivatives at

every time step. Therefore, a procedure has been developed to rescale

property derivatives which are taken with respect to computational directions.

As explained in Appendix F, the following equations for sf 2 and sf'/2 provide

the desired effect. 4lf 4 (6.3)
'2 (Xi+lj-- i-lj) "k(Yi+l,j--Yi-Lj)2

S 72 Xi+ _ ,j 4 (6.4)

-(Xij -Xi- 1 )2 + (yi,j+l - -Yi,j-1)
2

®R The cascade grids used for the present investigation do not change with

time. Also, sf 2 and sf?72 are only functions of grid point locations. Therefore,

sf 2 and sf?72 are calculated once and stored, prior to the first time step.

These stored values are then used at every time step.

At the blade surface and trailing edge boundaries, smoothing is only

applied tangent to the boundaries. At these boundaries the momentum

magnitude is smoothed and then split into x and y components to insure

tangency.

No smoothing is applied at the inflow or at the exit boundaries.

Interior points on the periodic boundaries and grid cut boundaries are

smoothed like other interior points, but with special indexing required due to

V. 11g ~
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the locations of these boundaries on the computational grid.

VI.2.3 CONVERGENCE CHECK

With unchanging boundary conditions, sufficient time stepping will lead to

asymptotic values for all properties at all grid points. This set of property

values is the steady state solution for the flowfield.

In the present investigation, experimentation with the code reveals that the

total energy is the slowest of the four solution variables to converge.

Therefore, changes in the total energy are monitored to determine the level of

convergence.

At the end of each time step, the change in total energy at each grid point

is calculated, normalized by the total energy at that grid point, and compared

0 to an input tolerance value to determine if the solution has converged

sufficiently. For all results described in Section VII, solutions were converged

to a tolerance of 10- 5.

Care is taken to avoid the effects of smoothing on the convergence check.

Prior to smoothing the solution at any time level, the newly calculated energy

values are stored and are compared to the energy ,alues stored at the previous

time step.

-- I 1
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SECTION VII

RESULTS

The final step in the development of the Euler solver in the present

investigation is the evaluation of the capability of the code. This evaluation

includes testing the code over the range of relevant cascade environments. To

this end, eight numerical case studies have been completed and evaluated.

One case was chosen as the baseline test case. All other cases differ from the

baseline case by varying one or more parameters. The results of those case

IV[

studies are discussed in this section.

VII.1 NUMERICAL TEST CASES

Table 8.1 summarizes the case studies used to evaluate the flow solver.

The following three parameters were varied:

1. Blade geometry.

2. Mach number regime.

3. Grid density.

The Mach number regime was varied by varying the ratio of inflow total

pressure to exit static pressure.

0c
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Table 7-1. Cascade numerical test cases.

Test Cascade Numerical Grid Mach Time Inflow Exit
Case Method Dimensions Number Step Total Press.1 Static

x 71 Regime Mode Total Temp.2 Press.1

(F_,t-rl Flow Ancl3

14 AACE II MacCormack 165 x 13 Transonic Local 96904.0 55981.0
(1.0) 300.0

0.0

2 AACE II M 0 C5  165 x 13 Transonic Local 96904.0 55981.0
(1.0) 300.0

0.0

3 AACE II MacCormack 83 x 7 Transonic Local 96904.0 55981.0
(1.0) 300.0

0.0

4 AACE II M O C 83 x 7 Transonic Local 96904.0 55981.0
(1.0) 300.0

5 AACE II MacCormack 165 x 13 Subsonic Local 96904.0 66327.0
(1.0) 300.0

0,0

6 AACE II MacCormack 165 x 13 High Global 96904.0 37308.0

Transonic (0.65) 300.0
0.0

7 GMA 400 MacCormack 195 x 11 Subsonic Local 96904.0 64392.0
(1.0) 300.0

42.
8 GMA 400 MacCormack 195 x 11 High Local 96904.0 53976.0

Subsonic (1.0) 300.0
42.6

1 Pascals
2 Kelvin
3 degrees
4 baseline case
5 numerical method of characteristics

.7'
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Two different cascades were evaluated in the present investigation. The

AACE II [6] and the GMA 400 [7] cascades were chosen for several reasons.

First, both of these cascades are representative of modern turbine blade

geometries. In addition, the cascades differ significantly from each other.

Finally, high quality experimental blade surface pressure data are available for

both of these cascades.

In order to meet the needs for maximum power extraction, minimal shock

losses, and light weight component designs, turbines are usually designed to

operate with maximum Mach numbers only slightly in excess of Mach one.

Therefore, to verify the ability of this code to evaluate the relevant range of

turbine Mach numbers, test cases were chosen with maximum Mach numbers

varying from approximately 0.8 to 1.35.

* The MacCormack method is second-order accurate in time and space.

Therefore, the density of the grid used to discretize the flowfield has a great

effect on the accuracy of the results of the numerical studies. In order to

evaluate the dependence of the flowfield solutions on grid point density, two

different grid densities were used. For most test cases, grids with 2145 grid

points (165x13 or 195x11) were used. For two of the test cases involving the

AACE II cascade, a grid with 581 (83x7) grid points was used. Grid points

were placed with similar relative point density distributions on both AACE II

grids. The coarse grid represents a decrease in grid density of approximately

half in each of the computational directions. This decrease should result in a

four fold increase in numerical error.

AM-
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The three grids discussed above are illustrated in Figures 7-1 to 7-3.

Figure 7-1 is the high density (165 x 13) AACE II grid. Figure 7-2 is the low

density (83 x 7) AACE II grid. Figure 7-3 is the high density (195 x 11) GMA

400 grid. The dimensions of the two high density grids differ because the

solidity (chord length over blade spacing) of the GMA 400 cascade (1.83) is

greater than the solidity of the AACE II cascade (1.30).

The predictions of all of the test cases were compared against experimental

results. The experimental results consisted of blade surface static pressure

measurements for each of the cascades. Because the experiments were all run

with air at approximately standard sea level pressure and temperature, the

numerical studies were run under the same conditions.

The numerical method of characteristics is recognized as an excellent

numerical method because it so accurately matches the fluid physics it models.

An inviscid numerical method of characteristics cascade flow solver has been

developed as part of this research effort. The characteristics code is described

in Appendix C. This code is used in the present investigation as another

verification of the primary, MacCormack code. Therefore, the results of two

of the primary code test cases mentioned above are compared to the results of

the numerical method of characteristics code.

VII.1.1 TEST CASE 1

Case 1 is chosen as the baseline test case for the following two reasons.

First, in addition to experimental results and results from the numerical

method of characteristics code developed for the present investigation, the
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C

Figure 7-1. High density AAGE 11 cascade grid. (165 x 13).
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Figure 7-2. Low density AAGE 11 cascade grid. (83 x 7).
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Figure 7-3. High density GMA 400 cascade grid. (195 x 11).
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AACE II blade has been studied by Delaney J141 and Kemry 1151. Second, the

pressure ratio across the blade row predicts an average exit Mach number of

0.9211. This suggests that flow slightly in excess of Mach one should be

expected in the flow passage near the suction side of the blade. This is

representative of turbine blade row design conditions.

In addition to being representative of turbine design conditions, the range

of Mach numbers present in the baseline case flowfield provides an excellent

test of the numerical scheme. For this case, a large region between the

cascade blades contains fluid flowing at Mach numbers between 0.9 and 1.1.

Property gradients are large in flowfield regions where this range of Mach

numbers exist. When flowfields are solved numerically, high property

gradients tend to cause correspondingly high numerical errors. Therefore, the

CI accuracy with which fluid properties are calculated in these regions of the

flowfield demonstrates the capability of a numerical method.

Figure 7-4 presents the blade surface pressure for the Case 1. As

illustrated, the numerically calculated blade surface static pressure

distribution agrees quite well with the experimental results. Over the first

seventy percent of the pressure side of the cascade blade, the pressure values

match almost exactly. From the seventy percent point to the trailing edge

region the calculated pressures slightly exceed the measured values.

Both the experimental and numerical results show two low pressure (high

speed) regions on the suction side of the blade. Between the midchord of the

suction side and the trailing edge region of the pressure side, the flow is

AL
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accelerated because of the flow passage restriction. Just upstream of the

trailing edge the flow is again accelerated. Figures 7-5 and 7-6 illustrate

flowfield static pressure and Mach number contours, respectively. The

contours in each of these figures reveal these high speed, low pressure regions.

Figure 7-6 reveals a small supersonic pocket at the second location. These two

low pressure regions are evident, to some extent, in all test cases considered

for the AACE II cascade. The calculated results predict slightly less pressure

variation across the suction side of the blade than do the measured data.

The blade trailing edge is the only location where the calculated pressure

differed drastically from the measured pressure. Accurate calculations at the

trailing edge are virtually impossible, especially with an inviscid code. A

review of the literature reveals that numerical analysts usually try to keep the

CIO trailing edge calculations from diverging and from adversely affecting the

solution upstream of that region. See for example, the results of Delaney 116],

Srivastava et al. [17], and Kwon [18].

One factor used to calculate turbine blade row work is the circumferential

component of the force exerted by the fluid on the blade. This force can be

calculated by integrating the circumferential component of the pressure

difference between the two sides of the blade, over the axial component of the

chord. Based on this method of evaluation, the pressure discrepancies

generated at the trailing edge, by the present effort or any of the other efforts

just cited, are completely acceptable. Further discussion of the trailing edge is

presented in Section VII.3.

I" leg"
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VII.1.2 TEST CASE 2

The flow conditions of Case 2 are identical to those of Case 1. However, in

Case 2 the numerical method of characteristics code, rather than the

MacCormack code, has been used to predict the flow properties. The results

Pre very sirifir to the results of Case 1.

As illustrated in Figure 7-7, the characteristics code predicts nearly exactly

the same pressure distribution on the pressure side of the blade as the primary

code. Similarly, the trailing edge point pressure prediction is close to that

predicted by the primary code.

As compared to the experimental data, the characteristics code slightly

under-predicts the pressure on the suction side of the the blade, just aft of the

C leading edge. This discrepancy is also produced by the primary code, as

shown in Figure 7-4, but at less than half the magnitude as by the

characteristics code.

The pressure variations on the aft half of the bladc arc resolved more

accurately by the characteristics code than by the primary code. Both codes

show the greatest discrepancy between the computed surface pressures and

measured surface pressures on the aft half of the suction side of the blades.

Both under predict the pressure variations in that region. Specifically, both

predict that the static pressure values in that region are slightly higher than

the measured values. However, the characteristics code predicts the two low

pressure regions on the suction side of the blade more accurately than the

primary code.



84

o.0

I 
0.8

in

ill

S0.6A

0 .0 .4 - - . ... . . ..

0O00 A

AOMLZ( AXIA O TI

At
w 0.4-

U.1

in 0.2

0' METHOD OF: CHARACTERISTICS

AEXPERIMENTAL RESULTS

0.0 . I

0.0 20.0 40.0 60.0 80.0 100.0

NORMALIZE) AXIAL X-LOCATION

Figure 7-7. Test Case 2. Blade surface normalized static pressure.
AACE Il cascade, method of characteristics.

, V



85

Figures 7-8 and 7-9 illustrate static pressure and Mach number contours,

respectively, for the flow passage. The pressure contours shown in Figure 7-8

reveal that the characteristics code predicts slightly lower pressures on the

second half of the suction side of the blade as compared to the MacCormack

code predictions. Figure 7-9 shows a larger supersonic bubble computed by

the characteristics code in the high speed region just upsureamr of the trailing

edge.

VII.1.3 TEST CASE 3

The flow conditions and the numerical method of Case 3 are identical to

those of Case 1. However, in order to evaluate the accuracy of the method,

the flow is solved on the coarse grid shown in Figure 7-2. In some regions of

Gthe Bowfield, the results are very similar to the results of the baseline case. In

other regions, significant resolution is lost on the coarse grid.

Figure 7-10 presents the blade surface pressure for Case 3. As this figure

shows, the suction side pressure distribution predicted on the coarse grid is

almost identical to that predicted on the fine grid. Some resolution very near

the trailing edge is lost on the coarse grid. However, the static pressure

predicted immediately at the trailing edge is closer to the measured value.

This anomaly is addressed in Section VII.3.

The property value resolution at the leading edge is reduced on the coarse

grid. Figure 7-10 reveals that the maximum static pressure predicted on the

blade surface near the stagnation point at the leading edge is only 98 percent

of the inflow total pressure.

-
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The calculated pressure distribution on the aft half of the suction side of

the blade differs significantly from that predicted on the dense grid. The two

distinct low pressure regions predicted by both codes on the dense grids and

measured experimentally, are smeared together on the coarse grid. The code

predicts a nearly constant pressure level over this part of the blade. This

predicted constant pressure level is approximately equal to the actual average

pressure for the region. However, the chordwise variation of pressure is lost.

Figures 7-11 and 7-12 illustrate static pressure and Mach number contours,

respectively, for the flow passage. Figure 7-11 reveals the same loss of

resolution discussed above. The pressure contours shown in this figure are

very similar to those shown in Figure 7-5 except on the aft half of the suction

side of the blade. The coarse grid solution shows just one large region of

pressure between 50 kPa and 55 kPa. Similarly, the Mach number contours in

Figures 7-6 and 7-12 are very similar except in the region of the flowfield near

the aft half of the suction side of the blade.

Increased grid density also results in increaed computationa' costs.

Therefore, the improved resolution supplied by higher density grids must be

considered in the light of added computational expenses. In addition,

successively denser grids will provide diminishing improvements in flowfield

resolution. Certainly, grid resolution is sufficient when significant increases in

grid density produce relatively insignificant improvements in flowfield

resolution. Because of the large increases in solution accuracy near the aft

suction side of the blade, and to a lesser extent, near the leading edge

stagnation point, it is obvious that the coarse grid is inadequate. Sinc, the
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denser grid resolves all the major flow features, it is adequate.

In addition to higher computational expenses, increasing the density past

that of the dense grid shown in Figure 7-1 is constrained by considerations

discussed in Section VII.3.

VII.1.4 TEST CASE 4

The flow conditions of Case 4 are identical to those of Cases 1, 2, and 3.

Like Case 2, Case 4 compares the results of the primary code to those of the

numerical method of characteristics. As before, the two numerical methods

produce similar results, with some tradeoffs, but with slightly better

performance by the characteristics code in the regions of the flowfield which

have proven difficult to resolve accurately. Figures 7-13 to 7-15 illustrate the

0results obtained by the numerical method of characteristics solved on the low

density grid.

Cases 1 through 4 all predict very nearly the same pressure distribution on

the pressure side of the blade. On the other hand, the characteristics code

resolves the leading edge stagnation point as well on the coarse grid as on the

dense grid.

Unlike the primary code operating on the coarse grid, the characteristics

code does distinguish the .two low pressure regions on the suction side of the

blade. However, the resolution is not as good as is produced by either of the

numerical methods used in conjunction with the dense grid.

0 N
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I VII.1.5 TEST CASE 5

Test Case 5 is the first case with flow conditions which differ from those of

the baseline case, test Case 1. In order to test the code in a totally subsonic

flowfield, the MacCormack code was run at a pressure ratio across the blade

row which corresponds to an average theoretical exit Mach number of 0.76.

As with Cases 1 and 2, this case is solved on the dense AACE II cascade grid

shown in Figure 7-1.

Figure 7-16 presents the blade surface pressure for Case 5. As shown in

this figure, the experimental results corresponding to this case differ from those

of the baseline case in a few respects. The most noticeable difference is the

shallowness of the low pressure region on the suction side of the blade, just

G upstream of the trailing edge. In the baseline case, this region contains the

lowest pressure on the blade. In this case, the pressure is nearly constant over

the last 35 percent of the blade.

The measured pressure distribution over the remainder of the blade,

including the high speed region near the center of the suction side of the

blade, very closely resembles the pressure distribution over the blade in the

baseline case. As should be expected with a higher downstream pressure, the

blade surface pressures measured for Case 5 are slightly higher than those

measured for the baseline case.

is-
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Figure 7-16 demonstrates good agreement between the calculated and the

measured blade surface pressures. The MacCormack code predicts pressures

which are nearly exactly the blade surface pressures except in the low pressure

region in the center of the suction side of the blade and on the aft thirty

percent of the pressure side of the blade. In these regions, the calculated

pressure is as much as six percent higher than the measured pressure.

The pressure and Mach number contours for Case 5 are presented in

Figures 7-17 and 7-18. The maximum Mach number shown in Figure 7-18 is

0.80. This confirms that the entire flowfield is subsonic.

VII.1.6 TEST CASE 6

In contrast to Case 5, Case 6 tests the capability of the MacCormack code

to calculate the flow through the AACE 11 cascade in the high transonic Mach

number regime. For Case 6, the pressure ratio across the blade row

corresponds to a theoretical average exit Mach number of 1.25. Again, the

dense AACE II cascade grid, shown.in Figure 7-1, is used to discretize the

flowfield.

Figures 7-19 to 7-21 illustrate the results obtained for Case 6. As shown in

these Figures, the experimental results corresponding to this case differ

significantly from those of the previous cases, especially over the second half of

the blade. As Figure 19 illustrates, the shape of the pressure distribution on

the pressure side of the blade is similar to the previous cases, but the pressures

are lower. On the suction side of the blade, the pressure drops well below any

measured in the previous cases. Careful inspection of the measured pressures
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on the suction side of the blade reveals three low pressure regions rather than

two. This may represent an error in the measured values.

The calculated blade surface pressures shown in Figure 7-19 agree quite

well with the measured values. Agreement on the pressure side of the blade is

nearly exact. Along the suction side the calculated values follow the measured

values, but are generally from zero to four percent above the measured

pressure values. At the center of the first low pressure region, the calculated

pressure is six precent higher than the experimental value.

At the blade leading edge the property gradients in Case 6 are slightly

higher than in the previous cases. This becomes evident when Figures 7-20

and 7-21 are compared with previous pressure contour 'and Mach number

contour plots. Apparently, these higher gradients increase the numerical

C instabilities on the leading edge of the blade. The total pressure overshoot

and the low pressure spike, which are both shown near the upper left corner of

Figure 7-19, are evidence of this unstable tendency.

Increasing the density of the grid near the leading edge is one means of

increasing the stability of the solution in that region. However, in order to

maintain consistency with the other test cases, this idea was not used.

Another means of increasing the stability of the solution is to increase the

magnitude of the explicit smoothing coefficients described in Section VI.2.2.

Unfortunately, large increases in the smoothing coefficients can cause the

resolution of the property variations in the final solution to be smeared

excessively. A third means of increasing stability is to decrease the time step.
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This effectively increases the implicit smoothing of the solution. For the

present case, stability is achieved by slightly increasing the smoothing

coefficients and by using a global time step limit instead of a local time step

limit. In addition, the calculated time step is multiplied by a factor of 0.65. K

If this nigh transonic regime was characteristic of turbine blade row

flowfields, an extensive modification of the implemented smoothing technique

might be necessary. Specifically, property dependent coefficients could be used

to target instabilities at the leading edge. However, these coefficients would at

least double the computations required to smooth the flowfield. Therefore,

since this case is representative of the maximum Mach numbers found in

turbine blade rows, the present smoothing scheme is retained.

Figure 7-21 confirms that the Mach number at the exit boundary is

approximately 1.2. On the suction side of the blade, Mach numbers in excess

of 1.3 are computed. Unlike the previous cases, the entire flowfield aft of the

choke point is supersonic.

VII.1.7 TEST CASE 7

To demonstrate the capability of the MacCormack code to solve a different

cascade flowfield, a distinctly different cascade geometry was chosen. Tl'e

GMA 400 cascade, illustrated in Figure 7-3, was designed and tested by the

Allison Gas Turbine Division of the General Motors corporation :7'. The

flowfield through this cascade was calculated at two pressure ratios. Case 7

involves a flowfield with subsonic Mach numbers similar to that of Case 5.
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The flow leaving a jet engine combustor is usually not swirling. Therefore,

the zero leading edge camber angle of the AACE I1 cascade is representative of

the first blade row in a turbine. The GMA 400 cascade is representative of a

downstream blade row. The leading edge camber angle of this blade is 49.4

degrees. This allows the blades to operate efficiently in a flowfield which has a

circumferential velocity component which is approximately equal to or slightly

larger than the axial component. As Table 7.1 shows, the experimental data

were collected with inflow angles of 42.4 and 42.6 degrees for Case 7 and Case

8 respectively. This corresponds to approximately minus 7 degrees of

incidence. As Smith 171 notes, under these conditions viscous effects cause the

flow to separate on the pressure side of these blades. Since the present

investigation neglects viscous effects, some numerical errors should be expected

Aon the pressure side of the blade.

Measured and calculated blade qurface static pressures are presented in

Figure 7-22. Agreement between the two sets of values are excellent over most

of the blade. On the pressure side of the blade, where viscous separation

occurs in the actual flow, the calculated pressure values are as much as three

percent below the measured pressure values.

Figures 7-23 and 7-24 illustrate static pressure and Mach number contours,

respectively, for the GMA 400 flow passage. As Figures 7-22, 7-23, and 7-24

show, the property gradients over the first 30 percent of the suction side of the

blade are very high. This appears to be the cause of the higher than expected

calculated pressure values on that portion of the blade surface. Figure 7-24

confirms that the entire flowfield is subsonic.

0
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VII.1.8 TEST CASE 8

The GMA 400 cascade is considered again in Case 8. The GMA 400

experimental data with the pressure ratio across the blade row which comes

closest to matching the pressure ratio of the baseline case is chosen for

comparison. That pressure ratio corresponds to a theoretical average exit

Mach number of 0.95. For the GMA 400 cascade, this results in a maximum

Mach number on the flowfield of approximately 0.96.

Figures 7-25 to 7-27 illustrate the results obtained for Case 8. The

experimental and calculated blade surface pressure distribution comparison is

very similar to that of Casc 7. As shown in Figure 7-25, over most of the

blade the agreement between the two is excellent. However, on the pressure

side of the blade, where viscous separation occurs in the actual flow, the

calculated pressure values are, again, as much as three percent below the

measured pressure values.

As Figures 7-25, 7-26, and 7-27 show, the property gradients over the first

30 percent of the suction side of the blade are very high. As with Case 7,

these high gradients lower the accuracy of the numerical calculations. This

may be the cause of the higher than expected calculated pressure values on

that portion of the blade surface. Increasing the grid resolution near the

leading edge would improve the resolution. However, the number of grid

points was intentionally chosen to provide a reasonable comparison with the

grid used for the baseline case.

~7
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VII.2 EXPLICIT ARTIFICIAL DISSIPATION

Experience with the MacCormack code reveals that this combination of

methods is slightly unstable, especially at solid wall boundaries. Without

explicit damping, the instabilities cause the solution to diverge within a few

hundred time steps. The explicit artificial dissipation technique described in

Section VI.2.2 is used to control these numerical instabilities.

The impermeable wall boundary condition which is implemented at the

blade surface in the cascade flowfield creates the most serious instabilities.

Without any damping, instabilities cause very rough property value surfaces in

the leading edge region of the blade just prior to local divergence and program

termination. When damping is applied in the region at and around the

stagnation point, the same sequence of events occurs more slowly at other

O points along the blade surface. On some grids, when damping is applied at all

grid points which are near the blade surface, the same process occurs slowly

near the intersection of the periodic boundary and the inflow boundary. For

the sake of robustness and computational efficiency, a small amount of

smoothing is applied over the entire grid to control these instabilities.

Too much smoothing will either smear the solution excessively, or will

itself, cause the solution to diverge. The second derivative terms used to

smooth the solution also modify the solution of the equations of motion. If the

modification is small compared to the Euler solution itself, the result will

reflect the fluid physics. If the solution modification caused by the smoothing

is not small compared to the Euler solution, high gradient regions of the
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flowfield will be smeared and small scale flow features will be lost. When the

effect of the smoothing dominates the Euler solution, the result is

unpredictable. In some cases, the large smoothing effect can, itself cause the

solution to diverge. Just enough smoothing to control numerical instabilities is

optimal.

Since the smoothing does not model any real phenomenon, the correct

amount of smoothing can only be determined by experience. Therefore, when

a new cascade geometry is solved, or when new flow conditions are input, the

appropriate amount of smoothing is usually determined iteratively.

On the baseline case, Case 1, smoothing coefficients were tested, which

were 50 percent larger than the iteratively optimized coefficients, to determine

the smearing effect of the smoothing scheme. Only very small changes were

0o detected in the final solution. Therefore, the smearing effects of the present

smoothing scheme are acceptable.

As described in Section VI.2.2, the smoothing coefficients are linearly

decreased from an input maximum value, to an input minimum value. Since

the smoothing terms do modify the flow solution, and the magnitude of these

terms is decreasing, it can be expected that their changing magnitudes may

affect the convergence tolerance check described in Section VI.2.3. Therefore,

the amount of smoothing applied is decreased rapidly in order to reach the

constant minimum value quickly.

0
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VII.3 TRAILING EDGE POINT

Several things complicate the flow solution at the blade trailing edge.

Complications caused by the combination of the blade shape and the inviscid

fluid assumption are discussed in this section. The Kutta condition

implementation is discussed in the trailing edge point unit process sections of

Section IV and Appendix D.

Unlike some compressor blades, turbine blades are not designed to have

sharp leading and trailing edges. If turbine blades were manufactured with

sharp leading and trailing edges, heat transfer from the very high temperature

gases flowing past the blades would over heat these edges.

Unfortunately, rounded trailing edges complicate inviscid flow solutions in

Otwo ways. First, as Gostelow [19] discusses, the location on the trailing edge

where the suction side and the pressure side flows meet is not obvious.

Second, real, viscous flows create boundary layers along the blade surface aiid

a small stagnation region immediately behind the rounded trailing edge. A

wake is formed in the flowfield downstream of this aft stagnation point. These

features allow the gases to flow smoothly past the rounded trailing edge. This

is illustrated in Figure 7-28. Inviscid flow, on the other hand, tries to follow

the rounded trailing edge around to the point of application of the Kutta

condition. When the flow on each side of the blade reaches the point where

the Kutta condition is applied, it must abruptly turn, approximately 90

degrees. This situation is illustrated in Figure 7-29. This is not a realistic

situation and is generally not possible numerically.
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VII.1.7 TEST CASE 7

To demonstrate the capability of the MacCormack code to solve a different

cascade flowfield, a distinctly different cascade geometry was chosen. Tlhe

GMA 400 cascade, illustrated in Figure 7-3, was designed and tested by the
I

Allison Gas Turbine Division of the General Motors corporation 7. The

flowfield through this cascade was calculated at two pressure ratios. Case 7

involves a flowfield with subsonic Mach numbers similar to that of Case 5.

119

A variety of options for dealing with these problems are available. These

options are discussed next.

VII.3.l TRAILING EDGE POINT LOCATION

Most numerical analyists simply choose a location for the application of the

Kutta condition. One of the following locations is commonly chosen.I

1. The point where the blade camber line meets the rounded trailing edge.

2. The point where a straight line which is tangent to all the rounded

trailing edges in the cascade meets those rounded trailing edges.

Gostelow 1191 points out that in reality, this location makes a significant

difference in the flow solution around the blade. However, in most numerical

Adah solutions, the results at the trailing edge are not reliable. In the present

investigation, both of the options listed above were tested on the baseline case,

Case 1, and the results were compared. No significant differences were

detected. The first of the two options listed above was chosen to produce the

grids shown in Figures 7-1 to 7-3.

VII.3.2 BLADE TRAILING EDGE GEOMETRY

The second trailing edge problem discussed above does present serious

difficulties to the numerical analyst investigating cascade flows. Threc

possible solutions are listed below.
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1. Modify the shape of the blades being studied so that a sharp trailing

edge is produced. This can be accomplished in two manners. The aft

portion of the blade can be tapered to a point at the location along the

actual rounded trailing edge where the Kutta condition is to be applied.

The other technique is to extend the blade trailing edge. This extension

is tapered to a point. Property values calculated on the blade extension

are ignored.

2. Use relatively large grid point spacing near the trailing edge. This

effectively produces the same result as the first part of the previous

option.

3. Focus large amounts of smoothing near the trailing edge to damp the

instabilities associated with the abrupt turn which occurs at the point of

application of the Kutta condition.

Both parts of the first option have two major disadvantages. First, every

blade shape which is investigated must be modified. This procedure is both

time consuming and arbitrary. Any user of the cascade flow solver must be

trained to modify blade shapes prior to using the code. This detracts from the

user friendliness of the code. Because the final shape is somewhat arbitrary,

different analysts would modify the blades differently. Second, it is difficult to

know how the blade shape modifications effect the flow solution. 4..

Two modified AACE II blade shapes were investigated in the present

investigation. One blade differed from the actual blade shape over the last ten

percent of the blade, the second blade differed from the AACE II blade shape
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over only three percent of the blade. Both modified blades produced results

very similar to the results gained with the actual AACE II blade. However,

this option was discarded because of the requirement to determine new

geometries for each blade.

The second option listed above is an automated implementation of the

tapered blade shape solution just discussed. Any time a finite number of

discrete points are used to represent a curved surface, the shape is modified.

The more points that are used, the more accurate the representation. By

using relatively sparse grid points in the trailing edge region of a cascade

blade, a rounded trailing edge is represented by a point. In this case, analysts

need not be trained to modify blade shapes, and the magnitude and

arbitrariness of the modification are significantly reduced.

There are disadvantages to the second solution technique. Flow solver

truncation errors increase when the point spacing changes abruptly on a finite

difference grid. Therefore, by requiring relatively large grid point spacing near

the trailing edge, a large portion of the grid is constrained to use a fairly

coarse grid. If sufficient accuracy is available from grids of this density, this

constraint is not a problem. This solution is implemented in the present

investigation.

The third solution described above does not require blade shape

modifications and will permit a dense grid. As discussed in Appendix F, the

logical way to focus the appropriate amount of additional smoothing in the

trailing edge region is to multiply the existing smoothing terms by property
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dependent coefficients. These coefficients can be more computationally

demanding than the smoothing terms themselves. The added computer time

and expense required to compute these coefficients may be prohibitive.

0i



123

SECTION VIII

CONCLUSIONS

In response to the objectives proposed in Section 1, the following

conclusions are offered:

1. A robust Poisson-type elliptic grid generator has been developed to

generate C-type grids around two-dimensional cascade blades. This code

has been used to discretize cascade flowfields for this and other research

0 efforts. The quality of these grids is demonstrated by the high level of

accuracy of the flowfield solutions generated on them. The ability of the

code to generate C-type grids for cascade blade geometries described by

discrete (x,y) input locations, and the ability to handle various stagger

angles, blade turning angles, and solidities, all demonstrate the

generality of the grid generator.

2. An unsteady inviscid cascade flowfield solver has been developed. The

Kentzer method, using conservation variables, has been developed and

used to derive an appropriate set of equations to describe the physics at

each flowfield boundary. The MacCormack explicit finite difference

method is used to numerically integrate these equations at the

boundaries and the unsteady Euler equations in the interior of the

0
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flowfield. Unsteady solutions are computed directly with steady flow

solutions resulting as asymptotic solutions in time. The MacCormack

code has been used to efficiently produce cascade flowfield solutions.

Generality of the code has been demonstrated by calculating flowfield

solutions for two significantly different cascade geometries and by

calculating solutions over the full range of subsonic and transonic Mach

numbers typically found in turbines. Robustness has been ensured by

incorporating an efficient numerical smoothing scheme.

3. The accuracy of the MacCormack code has been confirmed by

demonstrating excellent agreement with experimentally measured blade

surface pressure measurements for both of the cascade geometries tested.

In addition, a numerical method of characteristics code has been

Gdeveloped, as part of this research effort, to provide a relative standard

of accuracy for numerical cascade flowfield solutions. Like the

MacCormack code results, solutions generated by the characteristics code

were compared to the measured blade surface static pressures. These

comparisons prove to be very similar to those generated by the

MacCormack code with only very slight improvements in accuracy in

regions where the Mach number is close to unity and, on a coarse grid,

near the leading edge stagnation region. Static pressure and Mach

number contour plots of the flowfield solutions generated by the two

codes are also very similar.
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APPENDIX A

GOVERNING EQUATIONS AND COORDINATE

TRANSFORMATIONS

Appendix A describes the governing equations for the current investigation.

The conservation variable forms of the governing equations are provided with

subsequent expansion to primitive variables. In addition, the equations are

presented in matrix form and are transformed into strong conservation form.

A.1 GOVERNING EQUATIONS IN CONSERVATION VARIABLE FORM

As stated in Section III, the equations applicable to this research effort nre

the continuity equation, the vector momentum equation, the energy equation,

and the thermal and caloric equations of state. These equations are repeated

here.

(P)t + V.(PV) = 0 (A.1)

(pVt + V-(pW) + VP = 0 (A.2)

(pe)t + V'IV(pe +P)l = 0 (A.3)

T - (A.4)
pR



129

a= _ I(A.5)

These equations are based on the following assumptions:

1. continuum flow,

2. inviscid flow,

3. no body forces,

4. no heat conduction,

5. simple thermodynamic system, and

6. thermally and calorically perfect gas.

A.2 EXPANSION TO PRIMITIVE FORM

In the present investigation the governing partial differential equations of

motion are used in both primitive and conservation variable forms. This

section presents the expansion of the Euler equations, equations (A.1) to (A.3),

from conservation variable form, to primitive variable form.

A.2.1 CONTINUITY EQUATION. The conservation variable form of the

continuity equation, equation (A.1), is expanded to primitive variables in the

following manner:

Pt + V'(Vp) + p(V'V) 0 (A.6)

- +p(VV) 0 (A.7)
Dt

... ... ... .
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Ao A.2.2 VECTOR MOMENTUM EQUATION. The conservation variable form

of the vector momentum equation, equation (A.2), contains the divergence of

the fluid density times the dyad of the velocity vector, 7'(pV). This terai

represents the divergence of the convection of momentum. This term is better

understood when it is expanded in the following manner:

First, expand one of the velocity vectors, V = ui + vj, to obtain:

V-(pvW) = V-(pVul,+pVvj) (A.8)

Next, perform the indicated divergence operation:

V-(pVV) = (IuV)x + (PvV)y (A.9)

Then, by expanding the remaining velocity vector into its components and

rearranging, the familiar convective momentum terms appear.

V-(pvv) = [(pu2 ). + (puv)y] + I(puv). + (pv2 )yjS (A.10)

Returning to vector notation, this term is expanded into primitive variable

form in the following manner:

V(pW) = V[V.(pV)] + [(pV)-V]V (A.11)

V.(pW) = pV(V.V) +V[V,(Vp)] + [(pV).VIV (A.12)

Using equation (A.12), the conservation variable form of the vector

momentum equation, equation (A.2), is expanded to primitive variable form in

the following manner:

VPt + A + PV(V') +V['(Vp)] + [(pv).V]V + VP = 0 (A.13)

1 ,1 '
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Combining appropriate terms into substantial derivatives and rearranging

yields:

SDp DV
+D-- -a V + ,V(V-V) + 7P = 0 (A.14)

Dt Dt

Equation (A.14) can be simplified further. The first and third terms of

equation (A.14) combine to form the velocity times the continuity equation,

equation (A.7). Therefore, by substituting the continuity equation and dividing

by the density, equation (A.14) reduces to:

DV
V-- + 7P = 0 (A.15)

Dt

A.2.3 ENERGY EQUATION. Given the assumptions listed at the beginning

of this section, the total energy, pe, can be expressed in several different forms.

*First, in terms of internal energy and kinetic energy:

V2

pe = P v+p- (A.16)
2

Next, assuming a calorically perfect gas:

V2
pe = perT +[, (A.17)

and, assuming a thermally perfect gas:

P V 2

pe = +p- (A.18)
-Y-1 2

These relationships will be used in the expansion of the energy equation,

equation (A.3), into primitive variables. First, expand all terms except the pe

product:
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(pe)t +V-V(pe) + (pe)(V'V) +VVP + P(V'V) = 0 (A. 19)

Substituting equation (A.18) into equation (A.19) yields:

P --- 2 l P + V2
-- 1 1) 2 -- + p 2Vj,

+ +py (7-V)+V.VP+P(7.V) = 0 (A.20)

Combining terms into substantial derivatives where possible results in a

primitive variable form of the energy equation:

1 DP + V2 Dp +p 2
)-1- D Dt DtN

+ (v-V) +p--(v.V) +V.VP = 0 (A.21)
AM& 2

This form of the energy equation is used in Appendix C to demonstrate the

equivalence of the primitive variable and the conservation variable forms of

the compatibility equations.

Another common primitive variable form of the energy equation which

incorporates the assumptions applicable to this project is derived next.

Expand equation (A.3) in the following manner:

ept +pet +pV'Ve +eV- p+peVV+PV'V+V'VP = 0 (A.22)

Combining the appropriate terms into substantial derivatives where possible

and using the continuity equation, equation (A.7), to simplify equation (A.22)

yields:

7., .q
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pDe +Pv'V +V'VP = 0 (A.23)

Using the momentum equation, equation (A.15), the pressure gradient term in

equation (A.23) can be exchanged for the following convective term:

V-VP V ] (A.24)

SinceD VV- _

Dt ,t equation (A.23) becomes:Dt Dt

D V
De (A.25)p--+PV-V = p D

Dt Dt (.5

AExpanding the energy, e, into internal and kinetic energy:

D (fi + -2-i D

p- 2 ____ =P A.6

Dt Dt (A.26)

Canceling equal and opposite terms and dividing by the density leaves:

D PU +PV.V = 0 (A.27)
Dt

Using the definition of specific enthalpy, h = f6 P/p:

Dh = Dfi 1D(P/p) _ Di + 1 DP P Dp (A.28)

Dt Dt Dt Dt p Dt p2 Dt

Solving equation (A.28) for the substantial derivative of internal energy, U,

provides a substitution for the first term in equation (A.27):
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Dh 1 DP + P Dp P 0 (A.29)

Dt p Dt p2 Dt p

The primitive variable continuity equation, equation (A.7), reveals that the

last two terms in equation (A.29) sum to zero. Therefore,

Dh 1 DP
---- 0 (A.30)

Dt p Dt

For a thermally and calorically perfect gas:

h = CPT- P (A.31)

Therefore,

Dh_ " [1DP P Dp 1
Dt 'y-1 p Dt p 2 Dt

CUsing this equation to modify equation (A.30) yields:

_ 1 DP P Dp 1 DPI -- I - -- =0 (A.32)
-y-1 p Dt p2 Dt p Dt

Rearranging simplifies equation (A.32).

DP yP Dp = 0  (A.33)

Dt p Dt

For a perfect gas, a2 = -yP/p. Therefore, the primitive variable energy

equation becomes:

DP a __2 _ = 0  (A.34)

Dt Dt

Thus, for the assumptions listed above, this primitive variable form of the

energy equation is equivalent to equations (A.3) and (A.21). Equation (A.34) is

0 &
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the form of the energy equation used in the method of characteristics.

A.3 GOVERNING EQUATIONS IN SHORTHAND NOTATION

The conservation variable form of the governing equations can be

presented in the following short hand notation:

(P)t = T (A.35)

(pV)t= . (A.36)

(pe)t (A.37)

where 1, A and 9 contain the space derivatives appearing in the

continuity, vector momentum, and energy equations, respectively. Written in

vector notation, W, A , and 9 are:

6= -V(pV) (A.38)

C =t -V'(pW)-VP (A.39)
T = -- [V(pe +P) (A.40)

A.4 GOVERNING EQUATIONS IN MATRIX FORM

The matrix form of the governing equations is:

Qt+E,±Fy =0 (A.41)

where

p Pu pv

pu pu 2-+ P puvQ=E = F = v2
pQ PPuv PV+ P
pe (pe + P)u (pe + P)v

* f%'y. '\ ,*t~*
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A.5 COORDINATE TRANSFORMATIONS

Coordinate transformations are often utilized in numerical computations to

improve solution accuracy. This requires two major steps: the transformation

of the grid covering the physical domain of interest to a uniform orthogonal

computational grid, and the transformation of the governing equations from

the physical domain to the computational domain. The grid transformation is

addressed in Section IV and in Appendix E. The transformation of the

governing equations is presented in this section.

Since neither the physical nor the computational grids is time dependent in

the present investigation, derivatives with respect to time are unaffected by

the transformation. Therefore, only space transformations are considered in

this section. The physical and transformed spaces are related through a one-

to-one correspondence. That is, each point in the physical domain, (x,y), is

related to exactly one point in the computational domain, (,/), and vice

versa. Therefore, the computational space is described by:

7= r/(x,y) (A.42)

or conversely

x X(-,??)

Partial derivatives of the generic variable, f - f(x,y), are transformed using

the partial differentiation chain rule:

®&I-lk9.W.e ~ 4"
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fX = f, + f,,r (A.44)

fy = f -f-+ f,,,/y ( .5

The terms c, 1y, rX,, and rly are the transformation metrics. To calculate

these metrics, the generic function f in equation (A.44) is replaced by x and y,

respectively, to form the following identities:

xx = X x+xrlx = 1

Y, = Y4X +Y,,,, = 0

or, in matrix form:

Cramer's rule provides a straightforward solution to this system of equations.

Thus,

X= J Y', (A.47)

i= - J Y( (A.48)

where J is the Jacobian of the transformation. By definition J is given by the

following determinant:

j y] (A.49)

This determinant is equivalent to the reciprocal of the Jacobian of the inverse

transformation, I. In other words, J = F', where
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I = X (A.50)
Y4 Y, I

The inverse Jacobian, I, naturally arises when Cramer's rule is used to solve

equation (A.46). Physically, the Jacobian represents a stretching function

which relates a differential volume in physical space to that same volume in

the transformed space.

A procedure parallel to that presented above, using equation (A.45), yields

the remaining transformation metrics:

y - J XI  (A.51)

y= J x4 (A.52)

Since the computational grid in the transformed space is orthogonal and

o equally spaced, all the inverse metrics (i.e., x4, x,,, y , and y,,) can be

calculated numerically to a high order of accuracy. Careful thought should be

given to the method of calculation of the transformation metrics. This topic is

discussed further in Section A.6.

A.5.1 TRANSFORMED GOVERNING EQUATIONS. Transforming the space

derivatives in equation (A.41) as shown in equations (A.44) and (A.45) results

in the following system of equations in weak conservation form:

Qt + ,E + i7,E,l + yF +,ly-F,l = 0 (A.53)

Equation (A.53) can also be cast in strong conservation form. In the strong

conservation form, the transformation metrics in equation (A.53), which are

coefficients of the derivatives of E and F, are placed inside the differentialAM1
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operators. For example, consider the following partial derivative:

(A.54)

Expanding this partial derivative by the chain rule yields:

[ E- = EJ [ 1 ] + E[1)I], (A.55)

The first term on the right-hand side of equation (A.55) is the same as the

second term in equation (A.53), after multiplication by the inverse Jacobian.

Solving equation (A.55) for this term yields:

[IEJ ] -E(~] (A.56)

Similar equalities can be formed for each of the terms in equation (A.53).

Making the appropriate substitutions and rearranging yields the following

result:

C
[IQ]t + [I(E . +F~y)] + [I(Er/1 +Fr/y)],,

-E [(Ic ), +(I ),]F [(I 'y) + (Iry),,] = 0 (A.57)J

Substituting equations (A.47), (A.48), (A.51), and (A.52) into the last two

bracketed terms of equation (A.57) shows that each of these terms is exactly

zero. Therefore, equation (A.57) reduces to:

[IQ]t + II(E x + F y))& + [I(Erq, + F?7y)],, = 0 (A.58)

This form of the governing equations, known as the strong conservation-law

form, was first developed by Vinokur [9] and Viviand [10].

@I
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A.5.2 CONTRAVARIANT VELOCITIES. Equation (A.58) contains several

groupings of velocity products of the following form:

S--Xu + Cv (A.59)

V = rxU + I/yv (A.60)

These groupings are called contravariant velocities. Contravariant velocities

represent components of the transformed velocity in the directions of the

computational coordinates. For example, U represents the velocity component

in the direction. This becomes obvious in a Lagrangian frame when, for

example, U is calculated by taking the total derivatives of with respect to

time. Thus,

U + -- d(A.61)

C 
dt dt + dt

where, by definition, - " -u-n - = v, are the Cartesian velocity
dt dt

components. Substituting these contravariant velocities into the transformed

governing equations improves computational efficiency. Thus, the strong

conservation-law governing equations, with the contravariant velocities

incorporated, are:

Qt + E4 + F,)----0 (A.62)

where

@p
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PI(pU) I(pV)
- = I(puU + P) - I(puV +- rj1P)

Q Pv E = (pvU+ ,p)F I(PvV +rP)
pe I[(pe+P)U] J I](pe +P)V] J

In this research program, equation (A.62) is solved using the MacCormack

explicit finite difference method [3] to calculate properties at all points in the

interior of the flowfield. The Kentzer method [2] yields similar sets of

equations applicable at the various boundary points.

A.6 CALCULATION OF TRANSFORMATION METRICS

Caution should be exercised when calculating the transformation metrics.

Thompson et al. [8] explain that the highest level of accuracy is obtained when

0the metrics are differenced numerically in exactly the same manner as the

dependent variables in the governing equations. For example, if a partial

derivative in the governing equations is approximated by a central difference,

then any metric used in conjunction with that derivative should also be

approximated by a central difference using exactly the same grid points. This

statement applies for equations cast in primitive variables as well as in

conservation variables. As described in Section IV, the MacCormack method

calculates all derivatives using one-sided differences. Therefore, the same

one-sided differences must be used to calculate the metrics.

To understand this precaution more throughly, consider the two terms in

equation (A.57) which were determined to be exactly zero and were therefore,

discarded. For illustrative purposes, consider the first of these terms:

Ir &
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E ((IEX)( + (Irx),,I (A.63)

The metrics in this term were calculated using equations (A.47) and (A.48'

Substituting these metric identities into equation (A.63) yields:

E I(IJy,,)( + (I(-J)y,),,] (A.64)

which can be written as:

E [(y,,) - (y),,I (A.65)

The MacCormack method differentiates the y,, and y, metrics using forward

one-sided differences for the predictor and backward one-sided differences for

the corrector. Considering the predictor:

E ly , + I.j -- y li,.j I - Iy4ij, Y -- i (A .66)

where A = A71 = 1.0. First, consider the case where the predictor metrics

have also been calculated using forward one-sided differences. For

example, y( = yi+,j -Yi,j and y,/ = Yi,j+l -yi, , etc. Inserting these

approximations into equation (A.66) yields:

- y1~,+ }~ ~ I- {yi+i,j -y,jI (A. 67)

Obviously, this term is exactly zero. The same result is obtained when

backward differences are used consistently.
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Next, consider a technique which does not use a consistent approximation

for metric derivatives. For this test case, use centered differences to

approximate the inverse metrics. For example, y = Jyj+I j-Yi 1 j1/2 and

y11 =Yij+1 -yi~jl1/2 , etc. Inserting these approximations into equation

(A.66) yields:

E lYi+l,j+l -- Yi+l,j-I - Yi,j+l -Yi,j-i

- IYi+l,+l --Yi-l,j+l I- {Yi+i,j -Yi-l,j (A.68)

In general, this term does not equal zero! Therefore, by not using consistent

approximations, the terms which were discarded because they are equal to

zero analytically, are in fact, not equal to zero numerically. In other words,

0an undesirable source term is added to the transformed equations when the

derivative approximations used to calculate inverse metrics are different from

the approximations used to calculate property derivatives. The net effect after

both predictor and corrector steps is proportional to the difference between

current time level properties and the predicted new time level properties (i.e.,

En+l-En~l). If this difference is exactly zero, the source term will also be

zero. However, this is seldom the case. Even if exact calculations are used to

calculate inverse metrics, the numerical approximation of the second

derivative, which is calculated using the MacCormack method, is not exact

and will still create an error.

AID&
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In order to avoid the undesirable source terms described above, the

approximation used to calculate the inverse metrics must be the same

approximation used to calculate flow property derivatives. In the case of the

MacCormack method, different approximations are used at the predictor and

corrector steps. Therefore, two sets of metrics must be used. One set must be

calculated using first-order forward differences and the other set uiut be

calculated using fit st-ordcr backward differences.

Close examination reveals another interesting point. Only one set of

Jacobian values is required. The inverse metrics discussed above are

multiplied by the local Jacobian to calculate the metrics. Then, in the

transformation to the strong conservation form, all terms are divided by the

local Jacobian. Therefore, in every term containing one metric (all first-order

*space derivatives), the effect of the Jacobian is eliminated. However, the

Jacobian in the time derivatives in the strong conservation form is not

cancelled out and is not affected by the consistency considerations described

above. Therefore, the most accurate approximation for the Jacobian should

be used.

s]
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APPENDIX B

METHOD OF CHARACTERISTICS

Characteristic theory identifies the physical paths of propagation of

information through a flowfield, which are the pathline and the wave surfaces.

The numerical method of characteristics uses characteristic theory to

numerically integrate the governing differential equations of motion. This

appendix describes the results of characteristic theory for the Euler equations

and outlines the numerical method of characteristics appr.,ach chosen as a

method of verification of the MacCormack code in the present investigation.

B.1 CHARACTERISTIC THEORY

Detailed developments of the method of characteristics have been

published by Rusanov [il], Zucrow and Hoffman 112], Hoffman [13], and Wang

[25]. This section summarizes the development as presented by Wang.

The governing equations for the present investigation are discussed in

Appendix A. These equations form a set of hyperbolic partial differential

equations of the first-order. In primitive variable form they are:

Pt +V.VP + PV.V = 0 (B.1)

DV
p- +VP=0 (B.2)° Dt
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DP 2 Dp

Dt Dt =0 (B.3)

The method of characteristics forms linear combinations of this set of

equations yielding an equivalent set of compatibility equations. A

compatibility equation is an interior operator which has one less independent

variable, contains derivatives only in the corresponding characteristic surface,

and is valid only in that surface. A characteristic surface is a surface in the

solution space on which the governing partial differential equations may be

combined linearly to form a compatibility equation.

For unsteady two-dimensional flow there are three independent variables:

(x,y,t). Therefore, the characteristic surfaces are surfaces in three-dimensional

space. There are two families of characteristic surfaces: stream surfaces and

wave surfaces. There are two types of characteristic curves corresponding to

the two families of characteristic surfaces: pathlines and wavelines. The

pathline is the intersection of all the stream surfaces containing the given

point in space which is under consideration. The waveline is the line of

contact between a wave surface and the Mach conoid. The Mach conoid is

the envelope of all wave surfaces which contain the given point in space which

is under consideration. Two stream surfaces and the corresponding pathline

are illustrated in Figure B-1. A Mach conoid, a wave surface, and the

corresponding waveline are illustrated in Figure B-2.

There are two types of compatibility equations corresponding to the two

types of characteristi surfaces: the pathline equation and the waveline

equation. Compatibility equations contain directional derivatives only along a

11111 11 111 N 1 1!11 1 1111 1111 1 .1II
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y

STREAM SURFACES

Figure B-1. Stream surfaces and corresponding pathline.
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Figure ]B-2. Mach conoid, wave surface and corresponding waveline.
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characteristic curve and in the corresponding surface. The directional

derivative along a characteristic curve is given by:

d( ( )t +  (B.4)
dt lurve

where V is the relative velocity vector along the curve.

Since the relative velocity along a pathline is the fluid velocity, the

directional derivative along the pathline is:

(B.5)dt pathline Dt

which is the substantial derivative. The energy equation in primitive variable

form, equation (B.3), is a valid compatibility equation as it contains directional

derivatives only along the pathline. Therefore, the primitive variable form of

the pathline equation is:

DP a2 P_ = 0  (B.6)

Dt Dt

The relative velocity along a waveline is:

W =V-afi (B.7)

where fi is the unit vector normal to the corresponding wave hypersurface.

Thus, the directional derivative along a waveline is:

-t [w-e'n ) - ( )t+(V-af () (B.8)

The primitive variable governing equations, equations (B.1), (B.2), and (B.3),

can be combined in the following manner to obtain a valid waveline equation:

1111111 !l I
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primitive F primitive 1 primitive

a variable variable variable
a continuity -Pafi" momentum +  energy =0 (B.9)

equation [ equation equation

Inserting equations (B.1) to (B.3) into equation (B.9) and rearranging to form

directional derivatives along the wavelines where possible, forms the following

waveline compatibility equation:

6t pan*-- +pa [v-V -fi.(fi.V)V=0 (B.10)

The term in brackets contains derivatives in the corresponding wave surface

which are called cross derivatives.

The pathline equation, equation (B.6), is valid on the pathline. The

waveline equation, equation (B.10), is valid on the wave surface corresponding

to the wave surface unit normal vector, ft. There are an infinite number of

choices for the wave surface unit normal vector fi corresponding to the infinite

number of wave surfaces at a point. However, only four compatibility

equations can be included as a set of independent equations for unsteady two-

dimensional flow. The pathline equation is included since it is the only

compatibility equation which contains a derivative of density. Consequently,

exactly three waveline equations are used.

B.2 THE NUMERICAL METHOD OF CHARACTERISTICS

Because the numerical method of characteristics is founded on

characteristic theory, it very closely models the fluid physics of the flowfield

being studied, and therefore, is very accurate. Unfortunately, it is also

" I.



complicated and computationally demanding. Marcum and Hoffman [261 have

developed a numerical method of characteristics analysis which is second-order

accurate in time and space and is very efficient relative to other numerical

method of characteristics analyses. In a manner similar to the implementation

of Marcum and Hoffman, the present investigation employs the numerical

method of characteristics to solve unsteady two-dimensional cascade flowfields.

In the numerical method of characteristics the computational coordinates

are the characteristic surfaces described in Section B.1. Therefore, numerical

method of characteristics analyses integrate the compatibility equations along

the corresponding characteristic lines. In direct marching numerical method of

characteristics analyses this is accomplished by constructing the network of

characteristic lines, which make up the computational grid, as the flowfield

solution is computed. This process is very computationally demanding in

flowfields involving more than two independent variables.

The inverse marching numerical method of characteristics uses a fixed grid

to prespecify solution point locations at the forward time level and projects a

local network of characteristic lines from those solution points back to the

current time level solution surface. Interpolation is used to determine property

values at the points where the characteristic lines intersect the current time

level solution surface. This inverse marching technique is much more efficient

than the direct marching technique for fiowfields involving three or more

independent variables such as the unsteady two-dimensional cascade flowfield

being studied in the present investigation.0



152

B.2.1 APPROACH. In the present investigation an inverse marching

numerical method of characteristics scheme is employed. The solution points

are the grid points of the AACE II cascade grids which are also used by the

MacCormack code. These grids are illustrated in Figures 7-1, and 7-2, and

their development is discussed in Section V.

Successive solution surfaces are separated by time steps which are

restricted by the CFL (241 stability criterion. The CFL criterion requires the

physical domain of dependence be contained within the numerical domain of

dependence. Figure B-3 illustrates the numerical domain of dependence, or

convex hull, for the inverse marching numerical method of characteristics. As

described in Section VI.2.1 for the MacCormack code, local or global time

steps can be used in the characteristics code.

The second-order accurate modified-Euler predictor-corrector numerical

integration method is used to integrate the compatibility equations. For the

predictor step of the modified-Euler method, the derivatives along the

characteristic lines are replaced by one-sided forward-difference

approximations. Cross derivatives and coefficients are evaluated at the

current time level. For the corrector step, the derivatives along the

characteristic lines are replaced by finite difference approximations centered

along the characteristic lines. Coefficients are evaluated as averages between

their values at the current time level and their predicted values at the forward

time level. In order to maintain second-order accuracy, without violating the

physical domain of dependence, evaluation of the cross derivative terms at the

forward time level is avoided in the manner developed by Butler [27].

0 . . . , . r • i l.
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Figure B-3. Convex hull for the numerical method of characteristics.
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Butler devised a scheme that explicitly eliminates the need to evaluate

cross derivatives at the forward time level. Butler replaced the set of three

independent waveline equations by a set of four waveline equations and a

noncharacteristic linear combination of the continuity equation and the energy

equation. The noncharacteristic relation is:

DP +'a 2 - 'V = 0 (B.11)

Dt

By forming three linear combinations of the finite difference forms of these

five equations, the cross derivative terms at the forward time solution point

are eliminated. These three equations, along with the pathline equation,

comprise a set of four independent finite difference equations for determining

the four primitive variable solution properties, p, P, u, and v, at the forward

0 time level solution point. Figure B-4 illustrates the pathline and four

wavelines between two solution surfaces. An indexing system for the local

characteristic network is also presented in Figure B-4. In that system, the

points where the wavelines intersect the current time level solution surface are

numbered 1, 2, 3, and 4, the point where the pathline intersects the current

time level solution surface is numbered 5, and the solution point at the

forward time level solution surface is numbered 6.

B.2.2 INTERPOLATION. Interpolation is used to determine property values

at the points where the the characteristic lines intersect the current time level

surface, points 1 to 5. Since the physical grid is nonorthogonal and nonequally

spaced, second-order accurate interpolation of each of the solution properties,
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2

Figure B-4. Pathline, four wavelines, and two solution surfaces.
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at every solution point, at every time level can be very computationally

demanding. However, efficiency is greatly improved by transforming the grid

to an equally spaced orthogonal grid and interpolating in transformed space.

Grid transformation is discussed in Appendix E, and the transformation of

partial differential equations from physical to computational space is discussed

in Appendix A.

Flow property values in the current time level solution surface are

determined by least squares quadratic bivariate curve fits in transformed space

of the data at the nine initial-value grid points which lie within the convex

hull illustrated in Figure B-3. The quadratic bivariate interpolating

polynomial for the flow properties in transformed interpolating space is:

f = a o + a A  + a 2 A?7 + a 3 A T + a 4
2 +a 5 A /  (B.12)

where f is any of the four solution property values, p, P, u, or v, and ,.\' and

A77 are the transformed distances from points 1, 2, 3, 4, or 5 to the central

point of the interpolating square. Specifically:

A = ' AX + y Ay (B.13)

and

A?? = 77" Ax + 77y Ay (B.14)

where Ax and Ay are the distances in physical space from points 1, 2, 3, 4, or

5 to the central point of the interpolating square. The values of Ax and Ay

are obtained from the finite difference forms of the pathline equation:

: ',' ', €' ,,Z, .'' ,, ,z .', . ',,. ",:,:,:.%,:, :- : %:x -. : %: -,O,
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'.\x5 = - u 65 At (B.15)

AY5= -v 6 5 At (B.16)

or of the waveline equation:

Z2Xm u -(-a hi)6 r 2 t (B.17)

Ym= -(v-a nj)6m At (B.18)

where the subscript m represents any of the waveline base points, points 1, 2,

3, or 4, and the double subscripts indicate average values along the

appropriate characteristic line. For the predictor step these average coefficient

values are replaced by the corresponding values at the current time level.

The coefficients a0 to a5 in equation (B.12) are determined through a least

Gsquares procedure applied in transformed space. In matrix form:

Aa = b (B.19)

where a is the six component vector of coefficients a0 to a5 , b is the six

component vector of terms which consist of summations over the nine grid

points in the interpolating square of products of f, A , and A??, and A is the

six by six matrix of coefficients involving summation of products of A, and

-A??. In the b vector and the A matrix, A and A?/ are the distances in

transformed space from the central point to each of the points in the

interpolating square. Since A = Ao/ = 1.0 over the entire grid, the A matrix

is the same for every interpolating square. This unique A matrix also has a

unique inverse. Therefore, A - ' is multiplied times the b vector to solve for the

a vector explicitly at every grid point at every time step.
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transformation metrics at the nine points on the same transformed

interpolating square used for flow property interpolations. The bivariate

interpolating polynomial is again equation (B.12) where f is one of the four

transformation metrics, ., (y, ?I/, or ?'/y. Because the grid is fixed, the

coefficients for the transformation metrics interpolating polynomials, a0 to a5 ,

are calculated once, before the first time step, and used at every time step.

B.2.3 UNIT PROCESSES. In many ways the unit processes developed for this

characteristics code are similar to the MacCormack code unit processes

presented in Section IV. For example, all the same types of boundary points

must be considered and the boundary conditions implemented are the same.

On the other hand, some considerations differ from those of the MacCormack

ecode. For example, primitive variables are used instead of conservation

variables, each solution point is predicted and corrected prior to moving to the

next solution point, and the numerical method of characteristics is employed,

rather than the MacCormack method.

Each of the following types of flowfield points must be considered:

1. interior points,

2. solid wall boundary points,

3. trailing edge point,

4. subsonic inlet boundary points,

5. subsonic exit boundary points, and

- ~*q ~ Ci
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6. supersonic exit boundary points.

All periodic boundary points and grid cut points lie in one of the regions

listed above. Therefore, no additional sets of equations are required to

compute these points. However, because of their location on the

computational grid, they do require special handling of indices.

All unit processes have several features in common. At every solution

point the following sequence is followed:

1. For the predictor:

a. Interpolating polynomial coefficients are determined for the four

solution properties, p, P, u, and v.

b. The physical locations of any of the five base points, points 1 to 5,

Gf required for the unit process under consideration, are calculated

using the characteristic equations, equations (B.15) to (B.18).

c. The transformed space locations of any of the five base points,

points 1 to 5, required for the unit process under consideration, are

calculated using equations (B.13) and (B.14).

d. Using the appropriate interpolating polynomial coefficients, a0 to

a 5 , in conjunction with the interpolating polynomial, equation

(B.12), each of the solution properties, p, P, u, and v, are

determined at any of the five base points, points 1 to 5, required

for the unit process under consideration.

e. Using the appropriate interpolating polynomial coefficients, a0 to

- ,. ' - II - *,~I~n
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"J.

$as, in conjunction with equations (B.12), (B.22), and (B.23), the

transformation metrics, "",, "y, i, and riy, and the cross derivative

terms, ux, Uy, vx, and vy, are determined at any of the four

waveline base points, points 1 to 4, required for the unit process

under consideration.

f. Using the equations presented below for the type of point being

considered, the four solution properties are predicted.

2. For the corrector many of the same steps are executed. However, in

order to achieve second-order accuracy, the values of coefficients

appearing in the equations are averaged between the values at the base

points, points 1 to 5, and the predicted values at the solution point,

point 6. For the corrector step:

a. The physical locations of any of the five base points, points 1 to 5,

required for the unit process under consideration, are recalculated IN

using the characteristic equations, equations (B.15) to (B.18).

b. The transformed space locations of any of the five base points, %

points 1 to 5, required for the unit process under consideration, are

recalculated using equations (B.13) and (B.14).

c. Using the appropriate interpolating polynor Il coefficients, a0 to

as, in conjunction with the interpolating polynomial, equation

(B.12), each of the solution properties, . P, u, and v, are

determined at any of the five base points. points I to 5, required

for the unit process tinder consideration.

We

S.Zr|
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d. Using the appropriate interpolating polynomial coefficients, a to

a5 , in conjunction with equations (B.12), (B.22), and (B.23), the

transformation metrics, 6C,, Y? %, and /y, and the cross derivative

terms, ux, uy, vx, and vy, are determined at any of the four

waveline base points, points 1 to 4, required for the unit process

under consideration.

e. Using the equations presented below for the type of point being

considered, the four solution properties are corrected.

B.2.3.1 INTERIOR POINT UNIT PROCESS. At interior points the pathline

equation, equation (B.6), is solved to determine the density at the solution

point, point 6. The finite difference form of the pathline equation is:

P6 = P+ Ti [Pr)P5j (B.25)
a56

where the double subscripts indicate average values along the appropriate

characteristic line, which in this case is the pathline.

The remaining solution properties, P, u, and v, are determined using the

method developed by Butler 1271. Butler used four waveline equations,

equation (B.10), and the noncharacteristic relation, equation (B.11), to produce

three independent equations. The particular linear combination used by

Butler eliminates the terms involving cross derivatives at the forward time

level. The unit vectors associated with the four waveline equations can not be

arbitrarily specified. Specifically, these unit vectors must be chosen in

orthogonal pairs where fi = fi3, = -fi 4 and fi X fi2 =

91111111111 -
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The finite difference form of the noncharacteristic relation is:

P6 t(al6Iu +v 6=CS (B. 26)

where

CS5  Ps- 2 p a) I ,+

The four waveline equations in finite difference form are:

PC) - (pa)61 (n1 juG + n1 jv6 )

-. t paln-lu,( 2 =) C1  (B.27)

where

AWL C, =P1 -- (pa) 61 (n11ul + n1 jv,)

+_ p a a 2 [(n' - 1) u + (n~ -1 v + n1 n (u + vx)]=Cq (.)

where

C2 =P 2 - (Pa) 62 (n2iU2 + n2jV2)

+ -- fpa 2I(n 2 - 1) u,,+(n 2 1vy +n 2 n2j (Uy~v) + )

20i2j1

moo p~,V~ .\
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P6 - (Pa)6 3 (n3 iu. + fl3jV6)

- ,a21(n'i - 1)u,, + (n' - 1) v + n3 in3 j (Uy + V) 3j C (B.29)

where

C3 = P3 - (Pa)63 (n 3iU3 + n3jV3)

P6 - (pa)64 (n4 iU6 + n4jV6)

-- Pa2'[(n' - 1) u. +(n',2-1) v + n j~~y~x 6 = C4  (B.30)

C4 = P4 - (pa)64 (n4 iu4 + n4jV4)

+ -Lt4i4 ([(n 2)u,,+ (n21v+ n4 n 4 j (uy+ Vx)J

The noncharacteristic relation and the four waveline equations are

combined to form three independent equations in the following manner.

Subtracting equation (B.27) from equation (B.29) yields:

I (pa)63 + (pa)61]I (n11u6 +nljvB) = C3 -C 1  
(B.31)

Similarly, subtracting equation (B.28) from equation (B.30) yields:

[(pa)6 4 + (Pa)62]I (n2iu6 + n2jVB) = C4 - C2 (B.32)
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The third equation is derived by subtracting the noncharacteristic relation

from the sum of the four waveline equations divided by two:

P6 + 1{ [(pa)63 -(ja) 6 j]( 1 u + n]jV6 ) +± [(/a)6,4 - (/'a)52 ]I (n2 iu6 + n2jv6)
1

-- (Cl + C2 + C3 + C4) - C5 (B.33)
2

At interior points equations (B.31) to (B.33) can be simplified by chosing fi '

and fi2 = j. This forces n3  i and fi4 -- j. Using these unit vectors and

rearranging equations (B.31) to (B.33) yields:

[C 3 - C1  (B.34)

u6 -- [(pa)153 + (pa) 1

tt [c4-=cI J (B.35)
I(Pa)6 4 + (pa)6 21

P6  - uB [(pa) 61 - (pa)63] + vr [(pa) 62 - (Pa) 64 ]+ C1 + C2 -4- 3 +C4 5

(B.36)

Equations (B.25) and (B.34) to (B.36) are solved to advance the solution in

time at all interior points. For the predictor step of the calculations, the

averaged coefficient values designated by double subscripts are replaced by the

corresponding values at the current time level solution surface.

do

A M MVA Ae
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B.2.3.2 BLADE SURFACE BOUNDARY POINT UNIT PROCESS. In a two-

dimensional cascade flow, the surface of the blade forms the only solid wall

boundary. The boundary condition applicable at a free slip boundary point is

that the velocity normal to the boundary is zero.

fij'V 6 = 0 (B.37)

where fil is the unit vector normal to the blade surface and pointing into the

blade at the solution point under consideration.

Since the fil unit vector lies outside the flowfield, the waveline equation

corresponding to the fil unit vector is replaced by the boundary condition,

equation (B.37). Since one of the four waveline equations used at interior

points is not available, Butler's technique must be applied in a different

manner at blade surface boundary points.

Expanding equation (B.37) to scalar form and solving for the v velocity

component at the solution point yields:

V= _ n2Ju (B.38)n2i

where the unit vector fi2 is tangent to the blade surface at the solution point.

Subtracting the fi2 waveline equation, equation (B.27), from the fi4 waveline

equation, equation (B.29), using equation (B.38) to eliminate the v velocity

component from the result, and rearranging yields:

0

p p wU - U U



167

U6 = [ 4 c](B.39)
1(pa)8 4 .+ (pa) 62 I

Subtracting the noncharacteristic relation from the sum of the fi3 waveline

equation plus the fi2 and fi 4 waveline equations added and divided by two, and

implementing the boundary condition yields:

P6 -(n 2i u6 + n 2j v6 ) (pa)6 2 - (Pa)6 4 + C 2 + C4  3 - C5  (B.40)

The chosen boundary condition reveals that the pathline lies on the blade

surface. Thus the pathline equation, equation (B.6), is still applicable and is

repeated here in finite difference form:

/G P6P5 +T [L 6-P5] (B. 41)

Equations (B.38) to (B.41) are solved to advance the solution in time at all

solid wall boundary points. For the predictor step of the calculations, the

averaged coefficient values designated by double subscripts are replaced by the

corresponding values at the current time level solution surface.

B.2.3.3 TRAILING EDGE POINT UNIT PROCESS. In the inviscid cascade

flowfield, the Kutta condition is enforced at the trailing edge of the cascade

blade. Specifically, the flows leaving the two sides of the blade surface at the

trailing edge are forced to flow parallel to each other in a direction such that

the static pressure is equal on the two sides of the trailing edge point.

Ask
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In the present investigation, the requirements listed above are enforced by

installing a small imaginary solid wall segment which is hinged at the trailing

edge point. By forcing the flow on both sides of the wall segment to follow the

wall, the flows on the two sides of the trailing edge are forced to be parallel to

each other. The flow on each side of the hinged wall segment is solved

independently, in the same manner as described in Section B.2.3.2 for the solid

blade surface point. Therefore, as at the solid wall points, equations (B.38) to

(B.41) are solved to determine the forward time level property values.

After solving for the flow properties on each side of the hinged wall

segment independently, the pressure difference between the two sides is

compared. If the difference is not equal to zero, to within a specified

tolerance, a zero finding secant method is used to correct the wall orientation

(flow angle) toward the angle where the pressures are equal. This procedure is

iterated until the pressure difference between the pressure and suction sides of

the blade, at the trailing edge, is approximately zero.

Because the imaginary hinged wall segment is not stationary, but instead is

allowed to pivot, the local coordinate systems, set up on each side of the wall

at the trailing edge points, also pivot. During the solution process at the
trailing edge point, the local coordinate system unit vectors, fly, i 2, n3, and fi4,

are defined with respect to their orientation at the forward time level, that is,

the time level of the predicted and corrected properties. In other words, at

each iteration, fil and fi3 are aligned perpendicular to, and f12 and fi4 are

aligned parallel to the hinged wall segment at the angle the wall is assumed to

be at, at the forward time level, during that iteration.
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B.2.3.4 EXIT BOUNDARY POINT UNIT PROCESSES. Because the

component of the flow velocity which crosses the exit boundary can be either

subsonic or supersonic, each exit boundary point must be checked, at each

time step, to determine which unit process is appropriate. At the exit

boundary, the unit vector fi, is placed perpendicular to the boundary, polnting

outward. Therefore, the quantity fil"V is calculated and compared to the local

speed of sound, a, to determine whether the boundary point should be handled

as a supersonic or a subsonic exit boundary point.

When the component of the fluid velocity perpendicular to the exit

boundary is greater than or equal to the local speed of sound, the exit flow is

only dependent upon upstream conditions. From a characteristic perspective,

this means that the base of the Mach cone (domain of dependence) lies

C entirely within the computational domain. In this case the interior point unit

process is appropriate and is applied as described in Section B.2.3.1.

When the component of the fluid velocity perpendicular to the exit

boundary is less than the local speed of sound, the fluid properties at that

boundary are dependent upon both upstream and downstream phenomena.

Therefore, at least one boundary condition must be applied at the boundary

point. The subsonic exit point unit process is described next.

In the characteristics analysis developed for the present investigation, one

boundary condition is applied at a subsonic exit boundary point. The chosen

boundary condition is that the exit static pressure is known:

P = Pexit (B.42)
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The waveline equation corresponding to the fil unit normal vector is

outside the flowfield, and is replaced by the boundary condition, equation

(B.42). Therefore, the equations used in conjunction with the Butler method

to determine the applicable equations at a subsonic exit boundary are the

boundary condition, equation (B.42), the finite difference form of the

noncharacteristic relation, equation (B.26) and the three remaining waveline

equations corresponding to the unit normal vectors fi2, fi3 , and f14 in finite

difference form, equations (B.28) to (B.30).

The finite difference form of the pathline equation, equation (B.25), is used

to solve for the density at the subsonic exit boundary points. That equation is

repeated here for convenience:

+ 1 P5 P]a5 (B.43)

Subtracting the fi2 waveline equation, equation (B.28) from the f24 waveline

equation, equation (B.30), yields:

(n2i u6 + 112j V.) [(pa)6,4 + (pa)62] P [C4 - C2]I (B.44)

Subtracting the noncharacteristic relation from the sum of the fi3 waveline

equation plus the fi2 and fi4 waveline equations added and divided by two

yields:

P8 + (pa)63 (n1 i u6 + n1j v6) + - (n'2 u6 + n2i v6) (pa)f4 - (pa)622J

11

1 (C + 4) +C3 CS(B.45)
2
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Solving equations (B.44) and (B.45) simultaneously for the two components

of velocity and implementing the boundary condition produces:

C4 -C2 n2i U6

v 6 - P)4+(a6 (13. 46)
n2u

njj (pa)64 + (pa) 62

+ni 1 (Pa)61+- (a)62 J(C-CQ)+ C2 +C4 J+C3-C5 -. tl (B.47)

(P63) ~ 2 )4+(a.

At a subsonic exit point, the boundary condition defines the exit pressure

at the solution point, the pathline equation in finite difference form, equation

C (B.43), is solved for the density, and equations (B.46) and (B.47) are solved for

the velocity components to advance the solution in time. For the predictor

step of the calculations, the averaged coefficient values designated by double

subscripts are replaced by the corresponding values at the current time level

solution surface. -

B.2.3.5 SUBSONIC INFLOW BOUNDARY POINT UNIT PROCESS. As in

the MacCormack code, the stagnation pressure, P 0, the stagnation

temperature, To, and the flow angle, 8, are specified as boundary conditions at

the inflow boundary. Of the compatibility equations, only the waveline

corresponding to the fil unit vector, equation (B.27), is solved at the inflow

boundary. The fil unit vector is chosen to be the x-direction unit vector, i.

Therefore, the equations applicable at the subsonic inflow boundary are the

I, V SION
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boundary conditions and one waveline equation:

P0 = P0 .,, (B.48)

T o = To,...,,. (B.49)

0 = 0,,,,. (13.50)

P 6 -(pa)B 1 uf+ -t (p a 2 VY) 6 = C 1  (B.51)

Since only one compatibility equation is used at the subsonic inflow

boundary, it must be computed without simplification. This is achieved

through iteration.

The Mach number, M, is the iteration variable in the subsonic inflow

boundary point unit process. Knowing an estimated forward time Mach

number and the boundary conditions given by equations (B.48) to (B.50),

several additional properties can be computed. In terms of known properties

of the flow and the Mach number:

PO1 -
P+ 1 M - - (B.52)P -RT° 1 + -_.1M2 "

2

= 1±'PO!;M. (B.53)

1~ + M
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Iw o , M , R T O ) '
UM R ) (B.54)

1 + tan2(0)2 f1+ 1M2)2

v = u tan (a) (B.55)

The iterative process used to find property values at subsonic inflow

boundary points is described next. For both predictor and corrector steps, the

procedure is initiated by guessing the forward time Mach number at the inflow

point being considered. For the first time step, the Mach numbe- guess is

calculated from the property values at the initial-value surface. Subsequently

the initial Mach number guess is calculated from the property values at the

Jk. current time level. The guessed Mach number is used in equations (B.52) to

(B.55) to calculate guessed forward time values of p, u, v, and P.

Equation (B.51) is solved for the pressure at the solution point:

P = At (pa + C (B.56)P =(pa)6 1 u--(pa V) 6 ±
6 2

In equation (B.56) the value of vy at the forward time level solution point is

approximated by the value of vy at the current time level solution point. This

lagging of the cross derivative reduces the method to first-order in time at the

inflow boundary points. As the solution is marched in time to a steady

solution, the first-order error term will approach zero. This handling of the

cross derivative term is necessary to avoid violating the physical domain of

dependence at the forward time level.

..

-,'% ':'*Io
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Equations (B.52) to (B.55) are to guessed the

solution properties at the forward time level. These guessed property values

are used in equation (B.56) to calculate the pressure at the forward time

solution point. If the calculated value of pressure and the guessed value of

pressure are equal, to within a specified tolerance, the Mach number guess is

correct and the guessed property values are the forward time level values. If

the calculated and guessed values are not approximately equal, a zero finding

secant method is used to home in on the correct Mach number. For the

results presented in Section VII, a tolerance of 10- 6 was used to evaluate

convergence of the pressure difference.

For the predictor step of the calculations, the averaged coefficient values

designated by double subscripts are replaced by the corresponding values at

the current time level solution surface.

B.2.4 SOLUTION PROCEDURE. At each time level all the unit processes

discussed in Appendix B.2.3 are applied to a given cascade geometry and a

current time level solution surface to advance the solution in time.

The flowfield initial conditions are set in the same manner used by the

MacCormack flow solver except that primitive variables are set rather than

conservation variables. The MacCormack code initial-value surface is

described in Section VI.1.

The time step calculation is based on the Courant Friedrichs Lewy (CFL)

[24) stability criterion. A procedure similar to the the one described in Section

VI.2.1 is used to conservatively approximate the CFL time limit at each grid

I
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point. The characteristics code and MacCormack code time step limit

analyses differ only in so far as the applicable convex hulls illustrated in

Figures B-3 and 6-1 differ.

The MacCormack code requires explicit smoothing to converge. Since the

characteristics code does not require smoothing for the cases discussed in

Section VII, none is applied. The capability of the code could be extended well

into the transonic range with the addition of explicit smoothing.

In the present investigation the characteristics code is marched in time

until a steady solution is achieved. The convergence check, used at each time

step, consists of comparing the largest normalized change in pressure at any

solution point in the fiowfield to a specified tolerance. The current time level

preqsure at each point is used to normalize the change in pressure at that

point. For the results discussed in Section VII, solutions were converged to a

tolerance of 10- .

IL!

I
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APPENDIX C

CONSERVATION VARIABLE COMPATIBILITY

EQUATIONS

This Appendix presents the primitive variable and conservative variable

compatibility equations and demonstrates the equivalence of these two sets of

equations.

C.1 COMPATIBILITY EQUATIONS

As described in Appendix B, characteristic theory uses the primitive

variable form of the governing differential equations of motion to derive the

pathline and waveline equations. The primitive variable compatibility

equations are repeated here for convenience.

The pathline equation is the energy equation in primitive variable form.

DP. - a a Pt-- -0  (C.1)
Dt Dt

The waveline equation is formed by the following linear combination of the

primitive variable governing equations:

primitive primitive primitive

a2 variable variable variable
continuity -pan- vector + energy 0 (C.2)

equation momentum equation
equation

which reduces to:

-- --- ' d n_ € '7 / 22 :: : ,p
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pan'p-- + Pa[ 0 (C.3)

Because these equations are cast in primitive variables, the Kentzer method 121

is normally applied in primitive variables. However, a conservation variable

variation of the Kentzer method is being developed and applied in the present

investigation.

The conservation variable form of the governing equations written in vector

notation are repeated here for convenience:

(P)t = (C.4)

(pV)t = W (C.5)

(pe)t = (C.6)

O where

= -V.(pV) (C.7)

= -V.(pW)- \p (C.8)

= -VIV(pe+P)l (C.9)

The following linear combination of the conservation variable form of the

governing equations produces the conservation variable pathline equation:

conservation conservation conservation

V2 variable variable variable
2 [ --1 continuity - vector + energy 0 (0.10)

equation momentum equation
e-ogstion

® k%
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Substituting equations (C.4) to (C.6) into equation (C.10) gives the

conservation variable form of the pathline equation in vector notation.

V2  a- t- V-(pV)t + (pe)t 2 , , -V .. +' (C.11)

In a similar manner, the following linear combination of the conservation

variable form of the governing equations produces the conservation variable

waveline equation:

conservation conservation conservation

+ afi' variable af variable variable

Y-1 continuity - )-1 vector + energy =0

equation momentum equation
equation

C 
(C. 12)

Substituting equations (C.4) to (C.6) into equation (C.12) gives the

conservation variable waveline equation in vector notation.

- nV V+"ai (,), + (pe)t
2 ,-1 IP- 1 I.++ n-1a +

±+]P_._ + a, _ .At +W (C.13)

By applying the Kentzer method to the compatibility equations, equations

(C.11) and (C.13), the appropriate set of conservation variable equations is

derived for each type of boundary condition. These conservative variable

formulations are used In the pre;cnt invcstAgatio2.

-9 U.U.Lf N
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It is important to note that the conservation variable compatibility

equations have not been cast in terms of directional derivatives along

characteristic surfaces. Therefore, these conservation variable compatibility

equations can not be used to develop a numerical method of characteristics

based on conservation variables.

C.2 EQUIVALENCE OF CONSERVATION VARIABLE AND PRIMITIVE

VARIABLE COMPATIBILITY EQUATIONS

Equations (C.4) to (C.6) can be expanded into a variety of primitive

variable forms. The following primitive variable continuity, vector

momentum, and energy equations have been shown, in Appendix A, to be

equivalent to equations (C.4) to (C.6).

For the continuity equation:

D--2- +P(7-V) = 0 (C.14)
Dt

For the vector momentum equation:

Dt P-- + PV(7,'V)'+ 7vp 0 (C.15)
Dt Dt

or

DV

For the energy equation:

AOL
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1 DP V D V2v+,- Dt ++  2 Dt P- + Y (7,'V)+ P (7'V) +V',P--0 (C.17)

~-1Dt 2 Dt Dt Ii12

or

DP P-a = 0 (C.18)
Dt Dt

C.2.1 PATHLINE COMPATIBILITY EQUATION. The equivalence of the

conservation variable pathline equation and the primitive variable pathline

equation is demonstrated in this section.

Substituting the governing equations, which have been expanded into

primitive variables, equations (C.14), (C.15), and (C.17), into equation (C.10)

yields:

li -- kL D P-'±(7.V) Dv a' ~~~~2 + ovV V WV + P' +2vp
2 -,,f-1 IDt Dt I D

DV 2

+ -1 DP + V2 Dp P- + yP (V'V)+p-(V.V)+V'VP =0 (C.19)
- Dt 2 Dt Dt -Y12

Distributing the coefficients of the continuity and momentum equation terms

yields:
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2 Dp v2] [y-1~ ra

v,2 [P v2(7-.V'iVR _V..p+ I DP
SDt j ~Dt -v-i Dt

+- DL +±-7C V) + 1Y-(7V) +V- 7P =o (C.20)
2 Dt Dt -'-1 2

Canceling opposite terms and grouping like terms leaves:

ID 2 Dp yp 2La D 2

1 -a-- +1 _ 1=7 V V+-2 0 (C.21)

Since :V-DV _ D (V 2 /2) tels emi qain(.1 szr.I diin
Dt Dt ,?h attr neuto (.1 szr.I diin

0a2 = 'yp/p, for a perfect gas, so the third term in equation (0.21) is also zero.

Therefore, equation (0.21) reduces to:

DP __2P =0 (0.22)
Dt Dt

Thus, the conservation variable form of the pathline equation is equivalent to

the primitive variable form of the patliline equation.

0.2.2 WAYELINE COMPATEBILITY EQUATION. The equivalence of the

conservation variable waveline equation and the primitive variable waveline

equation is demonstrated in this section.A

0N VM N0WQ 0QN10Q06
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In Section C.2.1 the conservation variable pathline equation, equation

(C.10), is shown to be equivalent to the primitive variable pathline equation,

equation (C.1). Therefore, if the conservation variable pathline equation,

equation (C.10), is subtracted from the conservation variable waveline

equation, equation (C.12), and the primitive variable pathline equation,

equation (C.1), is subtracted from the primitive variable waveline equation,

equation (C.2), the resulting two equations will be equivalent if the

conservation variable and primitive variable forms of the waveline

compatability equation are equivalent.

Subtracting equation (C.10) from equation (C.12) leaves:

conservation conservation

afi-V a2 + variable avi

a ] continuity - • vector =0 (C.23)

Scutiniy momentum

equation equation

Subtracting equation (C.1) from equation (C.2) leaves:

primitive primitive

pvriatve variable
variable

a2 continuity -pafi" vector - 0 (C.24)

momentum
equationequation

Inserting equations (C.14) and (C.16) into equation (C.24) and rearranging to

form substantial derivatives where possible yields:

a 2 D-e+ P7p(7.V)]Pafr [ k =0 (C.25)Dt Dt
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Substituting equations (C.14) and (C.15) into equation (C.23) yields:

[afi'V + a2]) +I(')-  t-afi [ Ip (.)+DV__-t+ P =c2)

Dt + ~ -V V1  + P(7, VjI+ Pk-+7P] 0

[aV~2jD+I( Dt D

(C.26)

Rearranging equation (C.26) yields:

(afiV)-L+ (afiV~pV + a2 [DL +P( V)] (afi.V)p
Dt [Dt I-J Dt

-(ah V)p(V-)-pa. -- pani.--- 0 (C.27)

Canceling opposite terms leaves: r4
a2 Dp + P(7-V) \IhDv--+ 'P 0 (C.28)

Dt I-Jtan D I =

Equation (C.28) is identical to equation (C.25). Therefore, the conservation

variable waveline equation is equivalent to the primitive variable waveline

equation.

AMIN&

0
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APPENDIX D

UNIT PROCESSES

Several unit processes are employed in the computation of cascade

flowfields. Each of the following types of flowfield points must be considered:

1. interior points,

2. solid wall boundary points,

3. trailing edge point,

4. subsonic inlet boundary points,

5. subsonic exit boundary points, and

6. supersonic exit boundary points.

All periodic boundary points and grid cut points lie in one of the regions listed

above. Therefore, no additional sets of equations are required to compute

these points. However, because of their location on the computational grid,

they do require special handling of indices.

Appendix D.1 summarizes the MacCormack method 13] and the Kentzer

method J2] prior to deriving the unit processes listed above.

The equations derived in this section are presented in terms of physical

domain (x,y,t) derivatives. Prior to their implementation, these equations are

transformed into computational space. At interior points the governing

equations are transformed into the strong conservation-law form as shown in

@w
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equation (2.33). At the boundaries the transformed equations consists of the

same groupings of space derivatives transformed into strong conservation-law

form. However, these derivative terms have coefficients which are not affected

by the transformation. Therefore, the boundary point equations are in a

weak conservation form.

At interior points the Euler equations apply. Those equations are repeated

here for convenience:

(P)t (D.1)

(pV)= t (D.2)

(pe)t = (D.3)

C* where T-, At , and V contain the space derivatives appearing in the

continuity, vector momentum, and energy equations, respectively. Written in

vector notation, W , Rt , and ' are:

= -V-(pVV)- vP (D.5)

S=-V-[V(pe+P)l (D.6)

At all boundary points, the Kentzer method is used to determine the

appropriate set of equations to be solved. At all interior and all boundary

points, the space derivative terms 16 , ft , and V , appear. In addition, at all

interior and all boundary points, the MacCormack explicit finite difference

AWL'
vow
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method is used to discretize the appropriate equations.

D.1 THE MACCORMACK METHOD

The MacCormack explicit finite difference method [21 is used in this

investigation to calculate the flowfield solution. This predictor-corrector

method is second-order accurate in time and space.

The transformed governing equations in matrix form are presented in

Section 11.3.3 and are repeated here for convenience:

Qt +E4 +,, 0 (D.7)

where

PI(pU) I(p)V)

PU I(puU + P) - I(puV + ,,,P)
Q=I pVE F I(PVV+,/P)

.pe I1(pe +P)U] L[(,e +P)V]

.e two steps of the MacCormack method can be summarized, for the

present investigation, by the following equations. The predictor space

derivatives are all computed using current time level property values:

i,j= Qilj- A t J,, [F (E .+]F (F,,J] (D.8)

The corrector space de-ivatives are all computed using forward time level

property values:

g~ - [B (E4 +B~fo D
Q,,J+ = Qi'J- At Ji[ jFi B I (D-9)

To achieve second order accuracy in time and space, the results of these two

Ew -11111
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9 steps are averaged:

Qi'l 2 -L i (D. 1)

Efficiency is improved by combining equations (D.9) and (D.10) in the following

manner:

_i. W, +2 QQi'i 4--At JJj'jIB I E, j,-I"+B ITJ"T (D. 11)

As shown in equations (D.8), (D.9), and (D.11), FO) are first-order forward-

difference operators and B() are first-order backward-difference operators.

Those operators are:

B(E') j Il

B(F (F.)+1 - Fi.Th

By~~~~~~~ inoprtn(tefraddFfeec prtrteMcomc rdco

equtio, euaton D.8, aplid t tE +tranfre gvrin qatosi

matrix~~ fom eoms

-~~~~D- ( r i1 E' _Fi 1Qj-~J~[~J(.2

B(E A U *UC ~ UVU ~ ~ "



188

Similarly, by incorporating the backward-difference operators, the

MacCormack corrector equation, equation (D.11), applied to the transformed

governing equations in matrix form becomes:[ I E'Ef1~1
Q.+ 0.5 -- +ill.+ - At ji,Jj + J (D.13)

For the present investigation, all grid spacings on the computational grid are

unity (i.e., A = AT/ =-- 1.0).

At each of the boundaries, one of the forward- or the backward-difference

operations requires flow properties and transformation metrics outside the

flowfield to approximate flow property partial derivatives at the boundaries.

Therefore, first-order or second-order extrapolations are used to approximate

these values outside boundaries. Then the MacCormack method, as described

0above, is applied to the appropriate boundary point equations to evaluate

boundary property values.

D.2 THE KENTZER METHOD

As described in Section III, the Kentzer method is being applied, in the

present investigation, in conservation variables. Therefore, at each of the

boundaries, the conservation variable pathline equation, equation (3.12), and

the conservation variable waveline equation, equation (3.13), combine with the

required boundary conditions to form the appropriate set of equations to

describe the pertinent physics. Equations (3.12) and (3.13) are repeated here

for convenience:

Roo N~
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v2 a1JPt -V(pV)t + (pe)t = 2  
a(

2 -l2 -1

V2+ 1 _Vp- iV+ afi! I(/V)t + (pe)t
2 -)-1 L ]

2 [i - - [v a 1 i +W (D.15)

In order to implement the boundary point equations, a local coordinate

system is established at the boundary point. The local boundary coordinates

are defined by b and E, where b = b+i+bjj is the unit vector normal to the

boundary and E = cii +cjj is the unit vector tangent to the boundary.

C At any given point, an infinite number of wave surfaces exist which could

be chosen for application of the waveline equation. Since a maximum of four

equations can be independent in an unsteady two-dimensional flow, three

waveline equations are used in conjunction with the pathline equation to

describe the properties at a point. The wave surface unit normal vectors,

ill fi2, and fi3 , are chosen such that they are equally distributed and aligned

with the boundary under consideration. The fil wave surface unit normal

vector is chosen to be the unit vector normal to the boundary, b. Thus, the

unit normal vectors are defined in the following manner:

fil = b (D.16)

=i 1 ! + /3
12 2 (D.17)
2 2

0[
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fi= _L 6 _ (D.18)
2 2

All five of these unit vectors, b, E, fl1 , fi2 , and fi3 , are shown at three boundary

point locations on a C-grid in Figure D-1.

D.3 INTERIOR POINT UNIT PROCESS

At interior points, the MacCormack method is applied directly to the

transformed governing equations in the strong conservation-law form, equation

(2.33). The resulting finite difference equations are used to advance the

solution in time.

D.4 BLADE SURFACE BOUNDARY POINT UNIT PROCESS

CIn a two-dimensional cascade flow, the surface of the blade forms the only

solid wall boundary. The boundary condition applicable at a free slip solid

boundary point is that the velocity normal to the boundary is zero:

l 'V = 0 (D.19)

Multiplication by the density yields an equivalent boundary condition:

b-(pV) = 0 (D.20)

Since the blade geometry and the boundary condition are invariant with

respect to time, the following is also a valid boundary condition:

b'(pV)t = 0 (D.21)

Expanding equation (D.20) to scalar form and rearranging provides an

expression for the y-iaomentum, pv, in terms of the x-momentum, pu:

i,
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pv= --I u {ipu (D.22)

To determine the applicable equations at the blade surface boundary point,

the governing equations, equations (D.1) to (D.3), are replaced by compatibility

equations, equations (D.14) and (D.15). The waveline equation, equation

(D.15), is applied in three wave surfaces corresponding to the wave surface

unit normal vectors fill fi2 , and fi3, given by equations (D.16) to (D.18). Since

the boundary condition, equation (D.19), must be incorporated, the waveline

equation corresponding to vector fil (which was intentionally placed outside

the flowfield) is replaced by the boundary condition. The applicable equations

at a solid wall boundary point are the boundary condition, equation (D.19),

the pathiine equation, equation (D.14), and the waveline equation, equation

0(D.15), applied in the remaining two wave surfaces corresponding to wave

surface unit normal vectors fi2 and fl3. Thus,

6-.V = 0 (D.23)

a'Ip V PVt+ ,t=---- a --V. 'W+ (D.24)
V2 --I +2 V

=ii +_V t aa2 "(pV)- + (pe)t2 --1 Pt- -Y' 1 I

--- + I--1 _ V+ - J "IR + V (D.25)

02
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T+  p- V+ _---i -  p~ p~
V2 afi&V 13~

-- +- _ a- 4 + W (D.26)

Equations (D.23) to (D.26) comprise an appropriate set of equations for the

solid wall boundary point. However, these equations are unnecessarily

complicated. Equations (D.24) to (D.26) each contain more than one time

derivative. These four equations can be rearranged into a form which is

simpler and more computationally efficient to solve by a finite difference

method. The rearrangement and simplification of this set of equations is

demonstrated next.

Adding the two waveline equations, equations (D.25) and (D.26), and

" O rearranging yields:

v2 a(6 2 +{ fl3)'V. (P-

a(f 2 + fi3)
- 2V+ a fi I- [(PV)t- f I+2[(pe)t- 1 = 0 (D.27)

Subtracting twice the pathline equation, equation (D.24), from equation (D.27),

using the result that fi2 + fi3 =- b, and rearranging yields:

[i.V-2a](P-(e) = I,.(pV)- . ] (D.28)

Implementing the boundary condition and solving for the temporal derivative

of density leaves:
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Pt t+ 2 (D.29)

Equation (D.29) is solved for the density at the solid blade surface boundary

point.

The derivation of the next solid wall boundary point equation starts by

finding another expression for the term (Pt- C ). Subtracting the fi3 waveline

equation, equation (D.26), from the fi2 waveline equation, equation (D.25),

recognizing that fi2 -fi3 = N/3 E, and simplifying the result produces:

(a-V)(pt-e ) = a[(pV)t- 1 ](D.30)

Adding 1, times equation (D.28) to E times equation (D.30) yields:

(pV)- .i = [6(.V-2a) +(.V)](t-' ) (D.31)

Simplifying equation (D.31) leaves:

(pV)t= . + [(V - 2a ) (Pt-C) (D.32)

Using equation (D.28) to eliminate the continuity terms produces:

(P)t [(V-2al) I tk' -2a 2 (D.33)

Applying the boundary condition and rearranging equation (D.33) leaves:

(pV)t = X + [ -](-) (D.34)

Equation (D.34) can be broken into scalar components. The x direction

I II........ P
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component of equation (D.34) is:

(pu)t = + + - - b ,) (D.35)

where A i is the x direction component of the vector momentum equation

space derivatives. Equation (D.35) is solved for the x direction compon. -it of

momentum, pu, at the solid blade surface boundary point.

Once the x direction component of momentum is known at the new time

level, the y direction component of momentum is calculated using the

boundary condition. Specifically, equation (D.22) is solved based on the local

coordinate system at the boundary point in question. Equation (D.22) is

repeated here for convenience:

pv pu (D.36)

The last equation solved at the blade surface boundary point is based on

the pathline equation, equation (D.14). Solving equation (D.14) for the

temporal energy derivative term yields:

(pe)t = V -- [ 7 --1 (Pt- )+V'(PV)t- ] (D.37)

Using equations (D.29) and (D.34) to eliminate the continuity and vector

momentum terms respectively, incorporating the boundary condition, and

rearranging leaves:

(pe)t = W + + ];" ) (D.3S)
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Equation (D.38) is solved for the total energy, pe, at the blade surface

boundary point.

Equations (D.29), (D.35), (D.36), and (D.38) are solved at each blade

surface boundary point to determine the solution at the new time level. Those

four equations are repeated here:

p= + 2 (D.39)

(PU)t = ±14 [ - -bi]bA (D.40)

'V c u(D.41)

o v2 a
(pe)t = F + 2(+-1) (b - ) (D.42)

The MacCormack method backward corrector calculations require

predicted property values one row of grid points inside the solid boundary.

This is achieved by extrapolating predicted values from the flowfield. Both

linear and quadratic extrapolation have been used at the blade surface during

the current research effort. With either approach some explicit smoothing is

required to stabilize the solution. Using linear extrapolation produces good

results. When quadratic extrapolation is used, the smoothing requirement is

increased to such an extent that some significant flow features are smeared

out. Therefore, linear extrapolation is used in the present investigation.
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D.5 TRAILING EDGE POINT UNIT PROCESS

In the inviscid cascade flowfield, the Kutta condition is enforced at the

trailing edge of the blade. Specifically, the flows leaving the two sides of the

blade surface at the trailing edge are forced to flow parallel to each other in a

direction such that the static pressure is equal on the two sides of the trailing

edge point.

In the present investigation, the requirements listed above are enforced by

installing a small imaginary solid wall segment which is hinged at the trailing

edge point. The flow on each side of the hinged wall segment is solved

independently, in a manner similar to the technique described in Section D.4

for the blade surface point. By forcing the flow on both sides of the wall

segment to follow the wall, the flows on the two sides of the trailing edge are

O forced to be parallel to each other.

After solving for the flow properties on each side of the hinged wall

segment independently, the pressure difference between the two sides is

checked. If the difference is not equal to zero, to within a specified tolerance,

a zero finding secant method is used to correct the wall orientation (flow

angle) toward the angle where the pressures will be equal. This procedure is

iterated until the pressure difference between the pressure and suction sides of

the blade, at the trailing edge, is approximately zero.

As mentioned above, the flow on each side of the imaginary hinged wall

segment is solved in a manner similar to the grid points which lie on the

remainder of the blade surface. However, because the imaginary wall segment

0
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is not stationary, but instead is allowed to pivot, the local coordinate systems,

set up on each side of the wall at the trailing edge points, also pivot. This is

illustrated in Figure D-2.

Throughout the trailing edge point unit process derivation, unless otherwise

specified, the local coordinate system unit vectors, b and E, are defined with

respect to their orientation at the forward time level, that is, the time level of

the predicted and corrected properties. Therefore, unless otherwise specified,

during the iterative solution process, b is aligned perpendicular to, and is

aligned parallel to the hinged wall segment at the angle the wall is assumed to

be at, at the forward time level, during that iteration.

The boundary condition applicable at the trailing edge point imaginary

CO hinged wall segment is that the velocity normal to the wall segment, at the

hinge, at its forward time level, is zero.

; -V = 0 (D.43)

Multiplication by the density yields an equivalent boundary condition.

G'(pV) = 0 (D.44)

The momentum terms and the local coordinate system change with time.

Therefore, taking the derivative of equation (D.44) with respect to time yields:

bt'(pV) + b'(pV)t = 0 (D.45)

Expanding equation (D.44) to scalar form and rearranging provides an

expression for the y-momentum, pv, in terms of the x-momentum, pu.

0 I
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Unit vectors at current
time level

----.. •Unit vectors adjusted to
new flow direction

Suction side flow

0 Pressure side flow pressure/ rpressur

/ Esuction

suctonction

Figure D-2. Trailing edge point unit vectors and flow directions.
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P - pu = jfu (D.46)

Equation (D.46) is true at any time as long as the unit vectors and the velocity

are all defined for the same time level.

Later in this development, a temporal version of equation (D.46) is

required. Taking the derivative of equation (D.46) with respect to time yields:

= ( u)+ (-(Pu)t (D.47)
(Pvt I j t CP)+I I P

To determine the applicable equations at the trailing edge point, the

governing equations, equations (D.1) to (D.3), are replaced with compatibility

equations, equations (D.14) and (D.15). The waveline equation, equation

(D.15), is applied in three wave surfaces corresponding to the wave surface

unit normal vectors fil, fi2, and fi3 , given by equations (D.16) to (D.18). Since

fil = f, the waveline equation corresponding to vector fil extends beyond the

hinged wall segment and therefore, does not affect the flow on the side of the

wall under consideration. As at the blade surface boundary condition, the fil

waveline is intentionally placed outside the range of influence of the flow, and

is replaced by the boundary condition, equation (D.43). Thus, the applicable

equations at the trailing edge point are the boundary condition, equation

(D.43), the pathline equation, equation (D.14), and the waveline equation,

equation (D.15), applied in the remaining two wave surfaces corresponding to

wave surface unit normal vectors fi2 and fi3 . Thus,

0
7.V
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'=0 (D.48)

-- ~~1 + F-V . (D. 49)

2 pX --1 (-V(V)t + (pe)t 2 -- 1

V a Pt- -afi2  (At + (D.51

2 /a a } 1+ F (D.50)

(+ [V2 afXi+ ] (D.51)

Equations (D.48) to (D.51) comprise an appropriate set of equations for the

flows on the two sides of the hinged wall segment (trailing edge point).

However, these equations are unnecessarily complicated. Equations (D.49) to

(D.51) each contain more than one time derivative. These four equations can

be rearranged into a form which is simpler and more computationally efficient

when solved by a finite difference method. The rearrangement and

simplification of this set of equations is demonstrated next.

Adding the two waveline equations, equations (D.50) and (D.51), and

rearranging yields:

9%
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SM [v2 + a2 ++fi3).V]v2+ (pl Ut - W"

a(fi2 +f1 3) ]'(PV)t- ]+2I(Pe)t- 0 (D.52)

Subtracting twice the pathline equation, equation (D.49), from equation (D.52),

using the result that fi2 +fi 3 =-b, and rearranging yields:

-2a ](Pt -(C =-[(,V)t- 'M (D.53)

Solving for the temporal derivative of density leaves:

Pt= T- [ ] (D.54)
k.V-2a

The boundary condition can not be used to cancel terms in equation (D.54) as

C in equation (D.29) because, if the imaginary wall segment has pivoted, the

velocity vector at the previous time step will not be parallel to the wall at its

new orientation. In other words, bnew*Vold =# 0.

Equation (D.54) is solved for the density on each side of the hinged wall

segment (trailing edge point) to advance the solution in time. However, prior

to solving equation (D.54), the temporal derivatives of momentum must be

calculated.

The first step in deriving the equations which will be used to calculate the

momentum components is to find another expression for the term (Pt - W

Subtracting the fi3 waveline equation, equation (D.51), from the fi2 waveline

equation, equation (D.50), recognizing that f19 - fi3 = N/3 E, and simplifying the
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* result produces:

(Wv)(pt-%' ) -()Vt -W I~U (D.55)

Adding b times equation (D.53) to E times equation (D.55) yields:

Simplifying equation (D .56) leaves:

(PV)t = A+ [ (V -2aS)](Pt-) (D.57)

Expanding equation (D.57) into its scalar components yields:

and

(pv)t = Rj + (v -2ab)(pt- T ) (D.59)

In order to eliminate the continuity terms from these equations, define the

u -2abI
s~calar g Then subtract g times equation (D.59) from equation

(D.58).

(pu)t -g (pv)t = s' - g .41 (D.60)

Using equation (D.47) to eliminate (pv)t from equation (D.60) produces:

(pu)t - g [(i)tCu ( )t] .A - g Aj (D.61)

Solving equation (D.61) for the (pu)t term yields:
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0 A, +g -A~ + i t ( p u )

(PU)t= + i ] (D.62)

1 -g I ci I

Equation (D.62) is solved for the x direction component of momentum on

each side of the imaginary hinged wall segment at the blade trailing edge

point to advance the solution in time. At the predictor step of the

MacCormack method, the current time level values of the fluid properties and

of the E vector are used. At the corrector step of the MacCormack method,

the predicted property values and the corresponding E vector are used.

Obviously, calculation of the temporal derivative of the ratio of the

components of E requires E components at the current time level and assumed

e components at the forward time level.

Once the x direction component of momentum is known at the new time

level, the y direction component of momentum is calculated using the

boundary condition. Specifically, equation (D.46) is solved based on the local

coordinate system at the forward time level. Equation (D.46) is repeated here

for convenience.

pv J-pu (D.63)
ci

The last equation solved at the trailing edge boundary point in the present

investigation is based on the pathline equation, equation (D.14). Solving

equation (D.14) for the temporal energy term yields:

S
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(pe)t = [ --2 --](Pt--¢')±V[(pV)t- (D.64)

Using equation (D.53) to eliminate the continuity term and rearranging leaves:

(pe)t = ' V+ { 2a -- , } [(P:V)t- A( (D.65)

Equation (D.65) is solved for the energy, pe, at the blade surface boundary

point to advance the solution in time.

Soliing equations (D.54) and (D.65) requires temporal derivatives of

momentum. Therefore, equations (D.62) and (D.63) are solved, then the

temporal derivatives of momentum are calculated numerically and substituted

into equations (D.54) and (D.65).

0In summary, equations (D.54), (D.62), (D.63), and (D.65) are solved on each

side of the imaginary hinged wall segment located at the blade trailing edge to

advance the solution in time. The solution process is iterated, changing the

flow angle at each iteration, until the pressures on the two sides of the trailing

edge are equal to within a specified tolerance. For the results presented in

Section VII, a tolerance of 10-6 is used to evaluate convergence of the

difference in the two values of pressure normalized by the inflow total

pressure. Equations (D.54), (D.62), (D.63), and (D.65) are repeated here for

convenience:

Pt + [ ] (D.66)
6"V-2a
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(PU)t = + .ijItuI (D.67)

pv-- (-Jpu (D.68)

(/e)t =+ V+ j "a- 1 jb "!(PVt- + a (D.69)

where g = (u -2abi)/(v-2abj). In the denominator of equation (D.67), the E

'Vector is parallel to the hinged wall segment at the current time level for the

predictor calculations, and is parallel to the hinged wall segment at its

assumed position at the forward time level for the corrector calculations. For

both steps, the temporal derivative of the ratio of the .components is equal to

the ratio at the forward time level, minus the ratio at the current time level,

all divided by the time step.

The same set of equations must be solved at the predictor and the

corrector steps of the MacCormack method. Therefore, the flow angle, and

the corresponding forward time level definitions of b and E, must be the same

for both steps. This constrains the iteration sequence to include both the

predictor and corrector steps. Therefore, all points on the C-grid except the

trailing edge point are predicted, next the trailing edge point is iteratively

predicted and corrected, then all remaining points are corrected.

A,

I II" 1' / ~r , * J!i
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D.6 SUBSONIC INFLOW BOUNDARY POINT UNIT PROCESS

When the component of the fluid velocity perpendicular to the inflow

boundary is less than the local speed of sound, the fluid properties at that

boundary are dependent upon both upstream and downstream phenomena. If

the fluid velocity were zero, the fluid properties would be influenced from all

directions equally. When the velocity is not negligible, a greater influence will

be felt from the upstream direction. From a characteristic perspective, this

means that most of the base of the Mach cone (domain of dependence) lies

outside the computational domain at the subsonic inflow boundary.

At an inflow boundary, one to four boundary conditions can be set. It

would only be appropriate to set four boundary conditions if the flow

component crossing the inflow boundary were supersonic, and therefore, the

flow properties were totally dependent upon the upstream conditions. Setting

three boundary conditions implies that a majority, but not all of the flow

influences are comming from the upstream direction. For the present

investigation, three boundary conditions are set at the inflow boundary.

The boundary conditions chosen for the subsonic inflow boundary are those

which reflect the properties of the flow which are most likely to be known

upstream of a turbine blade row. Specifically, the stagnation pressure, P 0 , the

stagnation temperature, To, and the flow angle, 6, are specified as boundary

conditions at the inflow boundary.

To determine the applicable equations at the subsonic inflow boundary, the

governing equations, equations (D.1) to (D.3), are replaced by compatibility
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equations, equations (D.14) and (D.15). The waveline equation, equation

(D.15), is applied in three wave surfaces corresponding to the wave surface

unit normal vectors fi1l, fi2, and fi3, given by equations (D.16) to (D.18). At the

inflow boundary the unit vector 1 is oriented perpendicular to the inflow

boundary and pointing in. This situation is illustrated in Figure D-1. Thus,

the wavelines corresponding to the fi2 and fi3 vectors and the pathline, which

are all outside the computational domain, are replaced by the three boundary

conditions. Only the waveline corresponding to the fil unit vector is placed

inside the computational domain. Thus, the applicable equations at the

subsonic inflow boundary are the three boundary conditions, P 0 , To, and 0,

and the waveline equation applied along the fil unit vector.

PO = Po,,,- (D.70)

T o = To,,,,., (D.71)

= 0i..1. (D.72)

+v a Pt - [V+ ~- (pV)t+ (pe)t

+ 1+ [ lV] [V a f]t +W (D.73)

Equations (D.70) to (D.73) comprise an appropriate set of equations for the

inflow boundary. In previous unit process derivations, multiple compatibility

equations made it possible to use linear algebra to simplify the applicable
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equations prior to implementation. Since only one compatibility equation is

used at the subsonic inflow boundary, it must be computed without

simplification. This means that all the temporal derivatives in equation (D.73)

must be evaluated simultaneously. This is achieved through iteration.

The Mach number, M, is the iteration variable in the subsonic inflow

boundary point unit process. Knowing an estimated forward time Mach

number and the boundary conditions given by equations (D.70) to (D.72),

several additional properties can be computed. In this unit process, the

density, p, the x-direction and y-direction components of momentum, pu and

pv, and the energy, pe, are needed at the forward time for the iterative

process. Therefore, in terms of known properties of the flow and the Mach

number:

2
o 1

0U 1O 2~~ (D.75)

RToIl+tan2(0) 1+ 1--1 M2I.---

pv - pu tan (0) (D.76)

pe=P 0  1 1 (D.77)

I+ -__l M 2 1 + - 1 M 2
2 2

AWWOMMM
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The iterative process used to find property values at subsonic inflow boundary

points is described next.

For both predictor and corrector steps, the iterative procedure is initiated

by guessing the forward time Mach number at the inflow grid point being

considered. For the first time step, the Mach number guess is calculated from

the property values at the initial-value surface. Subsequently, the initial Mach

number guess is calculated from the property values at the current time level.

The guessed Mach number is used in equations (D.74) to (D.77) to calculate

guessed forward time values of p, pu, pv, and pe.

Equation (D.73) is rearranged to solve for the temporal derivative of

energy:

(Pe ~ ~at 2 Y1 abP-) +--lI (vt-y (D. 78)

Temporal derivatives of density and momentum are calculated numerically

using the current and guessed forward time values of these properties. Using

these temporal derivatives and the transformed space derivatives, equation

(D.78) is solved for a calculated value of pe. If the calculated and guessed

values of pe are equal, to within a specified tolerance, the Mach number guess

was correct and the four guessed forward time property values are the

predicted (or corrected) property values at the new time step. If the

calculated and guessed values of pe are not approximately equal, a zero

finding secant method is used to home in on the correct Mach number. For

the results presented in Section VII, a tolerance of 10- 8 is used to evaluate
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convergence of the energy difference normalized by the value of energy at the

current time level.

For the predictor step, forward differenced space derivatives are required.

Therefore, quadratic extrapolation is used to approximate property values

outside the computational domain.

D.7 EXIT BOUNDARY POINT UNIT PROCESSES

Because the component of the flow velocity which crosses the exit boundary

can be either subsonic or supersonic, each exit boundary point must be

checked, at each time step, to determine which unit process is appropriate. At

the exit boundary, the unit vector b is placed perpendicular to the boundary,

pointing outward, as illustrated in Figure D-1. Therefore, the quantity 6-V is

calculated and compared to the local speed of sound, a, to determine whether

the boundary should be handled as a supersonic or a subsonic exit boundary.

When the component of the fluid velocity perpendicular to the exit

boundary is less than the local speed of sound, the fluid properties at that

boundary are dependent upon both upstream and downstream phenomena.

Therefore, at least one boundary condition must be applied to the solution

procedure. This situation is discussed in Section D.7.1 of this appendix.

When the component of the fluid velocity perpendicular to the exit

boundary is greater than or equal to the local speed of sound, the fluid

mechanics at the exit are only dependent upon upstream conditions. From a

characteristic perspective, this means that the base of the Mach cone (domain

I
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of dependence) lies entirely within the computational domain. In this case the

interior point unit process is appropriate at an exit boundary point. This

situation is discussed in Section D.7.2 of this appendix.

On a C-grid, the exit boundary is a single straight line with a length equal

to the blade spacing. However, the two ends of the computational grid

(- =1 =-constant and 4 = ma, = constant grid lines) make up the exit

boundary. This distinction does not affect the derivation of applicable

equations at the exit boundary. However, these two sections must be

implemented in a slightly different manner. Specifically, the numerical

approximation of space derivatives in the " direction requires property value

extrapolations beyond the exit at the predictor step for the , =Smax

boundary, and at the corrector step for the I 1 boundary. In both cases,

Gquadratic extrapolation is used.

D.7.1 SUBSONIC EXIT BOUNDARY POINT UNIT PROCESS. The

boundary condition applied at a subsonic exit boundary point is that the exit

static pressure is known:

P = Pexit (D.79)

Because pressure is not one of the four solution variables being computed at

each grid point, the solution procedure at the subsonic exit is iterative.

To determine the applicable equations at the subsonic exit boundary point,

the governing equations, equations (D.1) to (D.3), are replaced by compatibility

equations, equations (D.14) and (D.15). The waveline equation, equation0
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(D.15), is applied in three wave surfaces corresponding to the wave surface

unit normal vectors fl, fi 2 , and fi3, given by equations (D.16) to (D.18). Since

the boundary condition, equation (D.79), must be incorporated, the waveline

equation corresponding to vector fil (which was intentionally placed outside

the flowfield) is replaced by the boundary condition. This situation is

illustrated in Figure D-1. The applicable equations at a subsonic exit

boundary point are the boundary condition, equation (D.79), the pathline

equation, equation (D.14), and the waveline equation, equation (D.15), applied

in the remaining two wave surfaces corresponding to wave surface unit normal

vectors fi2 and fi3:

P = Pexit (D.80)

vafi
+ - - V (At + (D82 -V-1

= + V + a2.9 + T (D.82)

V -1 --11116,1
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+ PtafiV+ Jit- v+ t + (pe)t

S + -- V+ "R + F(D.83)

Equations (D.80) to (D.83) comprise an appropriate set of equations for the

subsonic exit boundary point. However, these equations are unnecessarily

complicated. Equations (D.81) to (D.83) each contain more than one time

derivative. Equations (D.81) to (D.83) can be rearranged into a form which is

simpler and more computationally efficient to solve by a finite difference

method. The rearrangement and simplification of this set of equations is

demonstrated next.

Adding the two waveline equations, equations (D.82) and (D.83), and

C rearranging yields:

v2 + a(f 2 +fi 3 )-V- (Pt- )

- 2V+ (23) ].f(PV)t- I ]±2[(pe)t-9' = ( )

Subtracting twice the pathline equation, equation (D.81), from equation (D.84),
using the result that fi2 + fi3 = - b, and simplifying yields:

[. a](Pe = iov)t-(8)

Subtracting the fi3 waveline equation, equation (D.83), from the fi2 waveline

equation, equation (D.82), recognizing that fi2 -fi3 = N/ E, and simplifying the

result produces:

U ' . . *-. -

Aftr

U! l .
11 1 111 Q 11011 iIIIl 'i''W W &M O N .1
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(v)(Pt- ) - cI(PV)t- it (D.86)

Adding b times equation (D.85) to times equation (D.86) yields:

(pV)t- R = [,(S.V-2a)+ E(V)](1,,-', ) (D.87)

Simplifying equation (D.87) leaves:

(pV)t - la = [(V- 2a)(pt -c (e (D.88)

The vector dot product of the velocity vector and equation (D.88) is:

V.[( v)- [V-a5V](pV- - ) (D.89)

Adding equation (D.89) to the pathline equation and rearranging yields:

= 6 + ( p 2abV (D.90)-- + - 2aS'V
V'-1 2

Equation (D.90) is solved for density at subsonic exit boundary points to

advance the solution in time. The value of (pe)t is determined during the

iteratiie solution process. This process will be discussed later.

Combining equations (D.O0) and (D.88) to eliminate the continuity terms

yields:

(pe)t - W I IV - 2ab-
(pV) + a ±2 v2 (D.91)

-- + - - 2aS-V
"Y- 2

Expanding equation (D.91) into scalar components produces:
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[(pe)t- W ]u - 2abil (D.92)(PU)t-- =A-- a2  V2

+ -- 2aS-V
"y-l 2

(p~v~ = j + [(pe)t - I 1v-2abj] (D.93))t a2 V 2  
V+ - 2af.

--1 2

Equations (D.92) and (D.93) are solved for the components of momentum at

subsonic exit boundary points to advance the solution in time. The value of

(pe)t is determined during the iterative solution process.

Up to this point the boundary condition, equation (D.80), has not been

incorporated. In addition, no equation has been derived to determine the

value of the energy at a subsonic exit boundary point. To tie these two

Cfactors together, consider the energy. Since body forces are negligible,

pe = i + /2pV 2. Since the fluid is assumed to be a perfect gas, this relationship

becomes: pe P + /2pV 2. Solving this equation for the static pressure

leaves:

P = (--1)[pe -'/2pV 2 1 (D.94)

This static pressure must be the specified pressure at the subsonic exit.

The following iterative process is used to calculate the flow properties at

the subsonic exit points. The process is initiated by guessing a value for the

energy, pe, for the new time level. For the first time step, the energy value is

obtained from the initial-value surface. Subsequently, the initial guess is set

at the energy value of the current time level.
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The current time level value of energy and the value of energy guessed for

the forward time level are used to numerically calculate a value for the

temporal derivative of energy. This temporal derivative is used in equations

(D.90), (D.92), and (D.93) to calculate values for the density and the

components of momentum. These values of density and momentum and the

guessed forward time value of energy are used in equation (D.94) to calculate a

value for pressure. If the calculated value of pressure is equal to the specified

exit pressure, to within a specified tolerance, the energy value guess is correct

and the calculated values of p, pu, pv, and the guessed value of pe are the

property values at the forward time. If the calculated value of pressure does

not agree with the specified exit presure, a zero finding secant method is used

to home in on the correct value of pe. For the results presented in Section VII,

a tolerance of 10-6 is used to evaluate convergence of the pressure difference.

D.7.2 SUPERSONIC EXIT BOUNDARY POINT UNIT PROCESS. At an exit

boundary point, when the component of the fluid velocity perpendicular to the

exit boundary is greater than or equal to the local speed of sound, the fluid

mechanics at the exit are influenced only by upstream conditions. In that case

the interior point unit process is appropriate. Therefore, the MacCormack

method is applied directly to the transformed governing equations in the

strong conservation-law form, equation (2.33). The resulting finite difference

equations are used to advance the solution in time.
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D.8 GRID CUT POINTS

All points on the grid cut lie in one of the regions discussed above.

Specifically, the trailing edge of the blade, one exit point, and several interior

points make up the grid cut on a C-type grid. Therefore, no new equations

need to be derived for the points on the grid cut. However, two factors

complicate the solution at points on the grid cut.

1. Each physical grid point on the grid cut is represented by two

noncoincident grid points on the computational grid.

2. In the computational space, where the calculations are carried out and

where flow property values are stored, there are only grid points in the

positive rl direction from the grid cut. Therefore, the MacCormack

CID method corrector calculation can not be carried out without special

indexing.

These issues are resolved for the trailing edge point in Section D.5 of this

appendix.

The interior points are handled as described in Section D.3, with a few

additional steps included to resolve the problems listed above. For every

c= constant grid line intersecting the lower side of the grid cut, the

( nax+l-) = constant grid line intersects the same physical location on the

upper side of the grid cut. All grid cut calculations are computed at the

computational grid points which lie on the lower side of the grid cut.

Therefore, the property values at the ( , 1) and ( , 2) grid points are used to

predict the 77 derivatives at the grid cut points. Then, the predicted property
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values at the ( ,1) and ( max±+l-,2) grid points are used to correct the r/

derivatives at the grid cut points.

After the property values have been predicted at (1, 1), these predicted

values are transferred to the ( max±l-, 1) predictor values storage locations

for use in the ( max-l-,2) corrector calculations. After the corrector

calculations have been completed, the corrected property values are

transferred to the (-ax+-1 , 1) corrector value storage locations.

The exit point which lies on the grid cut is handled as described in Section

D.7, but with the same additional indexing steps just described for the grid cut

interior points.

D.9 PERIODIC BOUNDARY POINTS

All points on the periodic boundary lie in one of the regions discussed

above. Specifically, one exit point and several interior points make up the

periodic boundary on a C-type grid. Therefore, no new equations need to be

derived for the points on the periodic boundary. However, three factors

complicate the flow solutions at points on the periodic boundary.

1. Since the flow through a cascade is assumed to be exactly periodic, the

property values at each point on the periodic boundary on the lower side

of the grid must be exactly the same values found at the corresponding

grid point on the periodic boundary on the upper side of the grid.

2. In the computational space, where the calculations are carried out and

where flow property values are stored, there are grid points only in the
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negative il direction from the periodic boundary. Therefore, the

Maceormack method predictor calculation can not be carried out

without special indexing.

3. At the periodic boundary grid point adjacent to the inflow boundary,

there are two grid points upstream of this point along r/ = constant grid

lines. Therefore, a decision must be made concerning how to calculate

the c space derivatives at these leading periodic boundary grid points.

The periodic boundary interior points are handled as described in Section

D.3 with a few additional steps included to resolve the problems listed above.

For every c = constant grid line intersecting the the periodic boundary on the

lower side of the grid, the (cmax-+1- ) = constant grid line is the

C corresponding grid line on the upper side of the grid. All periodic boundary

calculations are computed at the computational grid points which lie on the

periodic boundary on the lower side of the grid. Therefore, the property
C!

values at the (', 'r/ax) and (Vmax+l-<, l7max-l) grid points are used to predict

the 77 derivatives at the periodic boundary points. Then, the predicted

property values at the ((, rlmax) and ( , 71max-1) grid points are used to correct

the r? derivatives at the periodic boundary points. After the corrector

calculations have been completed, the corrected property values are

transferred to the ( max+l--, nMax) corrector values storage locations.

The special periodic boundary points which lie adjacent to the inflow

boundary are handled as discussed above with one additional consideration.

Both predictor and corrector space derivatives are calculated entirely on the

@i
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"I 1max = constant line on the lower side of the C-grid. In other words,

property values at (t, /max) and ( +1, /max) are used to calculate the predictor

-direction derivatives at (c, ?m)ax)- Therefore, property values at

( Max- , 'I/max) are not used to approximate property derivatives at this special

point.

The exit point which lies on the periodic boundary is handled as described

in Section D.7, but, with the same additional indexing steps just described for

the normal interior points which lie on the periodic boundary.

I!

0
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APPENDIX E

GRID GENERATION

Two of the major problems facing an analyst when constructing the

numerical solution of partial differential equations are: the numerical

implementation of the boundary conditions along the boundaries of the

physical space, and the selection of the finite difference mesh to represent the

continuous physical space. The boundaries of the physical space do not

generally lie along coordinate lines formed by an equally spaced orthogonal

grid system. When first-order accuracy is acceptable, boundary conditions can

be implemented along arbitrary lines in the physical space and/or

0 computations can be carried out on variable meshes. However, when higher-

order accuracy is necessary, the above factors present serious difficulties. This

has led to the extensive use of coordinate transformations to map the

boundaries of physical space onto coordinate lines of a transformed space and

to map nonuniform, nonorthogonal grids in physical space into uniform,

orthogonal grids in transformed space. Once computational and physical grids

have been generated, the numerical solution is implemented using the

appropriate transformed governing equations.

In the first part of this section some favorable characteristics of grid

generation methods are described. Then, the elliptic partial differential

equation grid generation method chosen for this effort is described in more

detail. Third, the techniques used to distribute points around the cascade0
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blade grid boundaries are summarized. Lastly, two illustrative examples are

presented to demonstrate additional capabilities of the grid generator.

E.1 BACKGROUND

The following list presents five features that are often required of grid

generators. Additional features may be required depending upon the specific

problem under consideration. For some simple problems, one or more of the

features listed below may be unnecessary.

1. The grid in the computational (transformed) space must be an equally

spaced orthogonal grid. Such a grid is required to enable the

development of accurate finite difference approximations to the

transformed governing equations which are to be solved numerically in

Othe computational space.

2. The coordinate transformation must yield a unique, one-to-one,

correspondence of all points. In other words, there is one and only one

point in the computational space corresponding to each point in the

physical space, and vice versa.

3. The coordinate transformation must be body-fitted. That is, the

arbitrary boundaries in physical space must map directly onto the

straight boundaries of the computational grid.

4. There must be no crossing of coordinate surfaces of the same family, or

of any interior coordinate lines with the physical boundaries. In other

words, both the minimum and maximum values of the transformed

®'
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* coordinates must occur on the physical boundaries.

5. The transformation must be continuous, have a continuous inverse, and

have a nonvanishing Jacobian. All physical coordinate lines and surfaces

should form smooth curves in the grid interior.

Partial differential equation methods are flexible in their application and

can fulfill all of the requirements listed above. When all the boundary points

of a physical domain are to be specified, elliptic partial differential equation

methods are appropriate. When some boundaries are unspecified (e.g., free-

stream conditions "far from" an aircraft in an external flow calculation),

parabolic or hyperbolic grid generators may be more appropriate.

In most cascade flow studies, the flow past any blade is assumed to be

identical to the flow past every other blade. Therefore, periodic boundaries

are chosen which isolate a control volume containing a representative turbine

blade and its associated flowfield. Therefore, exact locations for all boundaries

are known and are specified as Dirichlet boundary conditions. Elliptic partial

differential equation grid generation techniques are used to determine the

physical locations of grid points in the interior of the grid.

E.2 POISSON-TYPE CASCADE GRID.S

In this research, a Poisson-type elliptic partial differential equation grid

generator is used. The Poisson equation is simply the Laplace equation with a

nonhomogeneous source term added.
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The Laplace equation, applied to the generic variable f(x,y), is presented in

equation (E.1):

7-2f _ fxx + fyy = 0 (E.1)

Adding a source term to equation (E.1) yields the Poisson equation:

72f -= f + fyy - F(x,y) (E.2)

Both the Laplace equation and the Poisson equation are elliptic partial

differential equations. While a grid can be generated using the simpler

Laplace equation, the freedom to specify the nonhomogeneous terms in the

Poisson equation provides the added benefit of being able to control the

relative point distribution in the interior of the grid. For example, coordinate

surfaces can be clustered near a solid boundary. This capability is discussed

in more detail in section E.2.1. When multidimensional grids of this type are

generated, one Poisson equation is used for each space dimension. Thus, for a

two-dimensional Poisson-type grid generator, the following equations must be

solved numerically:

72 = yy + p  
(E.3)

27 = 77XX + r/yy = Q (E.4)

where P and Q are the nonhomogeneous source terms.

As mentioned earlier, for a cascade flowfield periodic boundaries are chosen

which isolate one period of the flow and allow the analyst to specify exact

locations for each point on every boundary. Several general shapes of physical

grids can be fit to a cascade blade. While a flow-through, or H-type grid, as

111 1111111



226

Ic

Figure E-1. H-type cascade blade grid.
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shown in Figure E-1, is an obvious choice, these grids are seldom used since

resolution is normally poor near the blade leading edge. 0-type grids are grids

in which the q = constant grid lines form closed loops around the blade, as

shown in Figure E-2. This type of grid is acceptable for the present study.

However, no family of grid lines is generally aligned with the flow beyond the

trailing edge. This can cause problems if the associated flow-solver is ever

extended to include viscous calculations. In addition, 0-type grids often

contain awkward and oversized grid cells near the intersection of the periodic

boundary and the exit boundary. These awkward cells can create relatively

large truncation errors in the flow solution. Therefore, O-type grids are not

used in this investigation.

C-type grids, like the one shown in Figure E-3, will be used in the present

0investigation. Obviously, the name is descriptive of the shape of each of the

members of the family of grid lines that surround the blade. Figure E-4 shows

the relationship between the boundaries of the C-grid and the boundaries of

the corresponding computational grid.

Solving equations (E.3) and (E.4) numerically would be simple if the

computations could be carried out on the physical grid. Unfortunately, due to

unequal spacing in this grid, only first-order accuracy can be achieved using

this approach. Therefore, the Poisson equations are transformed to the

equally-spaced orthogonal computational domain and solved there. The

transformed Poisson equations are:

th
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Figure E-3. C-type cascade blade grid.
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7 B

BOUNDARY 1OUNDADIRS
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5L

PERIODIC INFLOW PERIODIC

EXIT EXIT

I GRID 2 BLADE 3 GRID 4CUT SURFACE CUTBOARY BOUNDARY BOUNDARY

COMPUTATIONAL GRID BOUNDARIES

Figure E-4. C-type grid physical and computational boundaries.
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x4 - 23x ,, + ax,,,, = - I2 (px4 + Qx,,) (E.5)

(yZ. - 25y4,, + "y,,,, = - 2(Py + Qy,,) (E. 6)

where

XI - y-xilye

a = 2 2

x,, + Yq

= 2
x4 +y

For the C-type grid, grid points on the blade surface boundary, the grid

cut extending downstream from the trailing edge, the inflow boundary, the

periodic boundary, and the exit boundaries are specified as Dirichlet boundary

conditions. A modified successive over-relaxation (SOR) technique is used to

solve equations (E.5) and (E.6), thereby locating the interior points. Like a

normal SOR procedure, the iterative corrections at each point are over-

relaxed. However, corrections to the values of the nonhomogeneous terms, P

and Q, are under-relaxed each iteration. A detailed description of these

nonhomogeneous terms, as they are handled in this investigation, is presented

in the following paragraphs.

E.2.1 CONTROL OF GRID GEOMETRY NEAR BOUNDARIES. For the

grids generated to support this investigation, the nonhomogeneous terms in the

Poisson equations are used to control grid geometry based on the features of

the grid at the 77 - 1 and 77 = 7max boundaries. Along the blade surface, grid

1 1 q Q 1 ' I '1
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cut, and inflow boundaries, the following two features are controlled:

1. Grid line spacings from points on the inner and outer boundaries to the

corresponding points on the first grid line inside each of these boundaries

are specified.

2. Intersection angles between these same boundaries and the = constant

grid lines intersecting them are specified.

Similarly, along the periodic boundaries the following two features are

controlled:

1. Grid line spacings from points on the inner and outer boundaries to the

corresponding points on the first grid line inside each of these boundaries

are specified.

2. Slope of the = constant grid lines in the physical plane where they

cross the periodic boundaries is specified. The slope used is the tangent

of the cascade stagger angle.

Figures E-5 and E-6 illustrate these effects. Figures E-5 and E-6 each

consist of two identical grids joined at the periodic boundary. Figure E-5

presents a Laplace-type grid while Figure E-6 presents a Poisson-type grid

with the control features described above. Notice that, in addition to

controlling geometric features near the boundaries, the Poisson source terms

also control grid point distribution in the interior of the grid.

The Laplace-type grid has a very large range of grid cell sizes. The very

large grid cells may cause prohibitively large flow solver truncation errors in

0 I
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Figure E-5. C-type grid generated by the Laplace equation.

• I
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G

Figure E-6. C-type grid generated by the Poisson equation.
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these regions of the grid. In addition, there is insufficient control of the

skewness of grid line intersections. Excessive skewness increases truncation

errors and therefore, should be minimized.

Accuracy is also reduced by rapid changes in grid cell sizes and by

discontinuities in the derivatives of the grid lines (i.e., grid line slope,

curvature, etc.). In the limit of infinitely small grid cells, Laplace and Poisson

equations each insure completely smooth and differentiable grid lines in the

grid interior. However, with a periodic boundary like the one joining the grids

in Figures E-5 and E-6, control must be exercised over the grid features at the

periodic boundary to avoid sharp discontinuities in the grid line slopes and

rapid changes in the grid cell sizes across these boundaries. Each of the

problems described above is evident in the Laplace-type grid illustrated in

CFigure E-5. However, all of these problems have been overcome in the

Poisson-type grid illustrated in Figure E-6.

E.2.1.1 GRID CONTROL AT INFLOW, BLADE SURFACE, AND GRID CUT

BOUNDARIES. Steger and Sorenson [1] have developed the techniques

required to implement the controls described above. Some modifications to

their method have been developed for this investigation. Steger and Sorenson

start by solving equations (E.5) and (E.6) for Pb and Qb, which are the P and

Q values on the boundaries.

AMA



236

0 Pb J(y,,R1 -x,R 2) (E.7)

Qb = J(- R1 +x¢R 2) [,. (E.8)

where

R, = -j 2 (oix - 2flx ,, + mex, 11) 1IW

R2= -j 2(0y 213y ,, + 16~m

Values of Pb and Qb are calculated at each point on each of the r/ = constant

boundaries using equations (E.7) and (E.8). Since the physical locations of all

points on these boundaries are specified, x,, y , xxixi, and y,4 are calculated

directly from the specified boundary point locations.

The key to Steger and Sorenson's method is their evaluation of x,, and y,,.

They derive expressions for x,, and y,, by first considering the offset distance,

AS, which is the distance in the physical space from the boundary point, along

a = constant grid line, to the corresponding point one t/= constant grid line

inside the boundary. Thus,

AS [(Ax)2 +(Ay) 21 - 
2 [(-constant (E.9)

In the limit:

dS= [(dx)2 + (dy)] 'A- j=constant (E.10)

From the partial differentiation chain rule:

-
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dS = =dcn+sx,,dta)2 +(y~d +y,1dz/)' ]'  -co,,tnt (E.11)

Since dS/di} represents the distance between two points on the same

= constant grid line, d = 0. Therefore, equation (E.11) reduces to:

S = R 1( + (y,1) 2 j ' "-constant (E.12)

d r,/

The second grid geometry control feature Which Steger and Sorensen

address is the grid line intersection angle at the periodic boundary. This

control is implemented using the vector dot product:

\7 - =V? " \ r7 cos) (E.13)

where 0 is the desired intersection angle (0 = 90degrees yields orthogonal grid

line intersections). Equation (E.13) is the definition of the dot product of a

vector normal to the = constant grid line with a vector normal to the

71 = constant grid line. Carrying out the vector arithmetic and incorporating

the two-dimensional transformation metrics (Q = J y,,, y - J x,

7= -JyC, and 71y = Jx) yields:

xf,,+ ~y, -[(XI + Y,1)(X 2 + y 1)1'1 COSO (E. 14)

Solving equations (E.12) and (E.14) simultaneously to determine the necessary

values of xY and y,, required to meet these two conditions yields:

dS (-x~cos9-ysin6) (E.15)
d7+

0¢
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dS (-y~cos0+xsin6) (E.16)
?/ Y -+ E

Both 0 and dS/drj are specified at every location on each of the rt = constant

boundaries.

Once the values of x,, and y,, on the boundaries are known, the cross

derivatives xe,, and y4,, needed in equations (E.7) and (E.8) are calculated

numerically by differencing x,, and y,, with respect to . Therefore, the only

remaining unknowns on the right-hand side of equations (E.7) and (E.8) are

x,,,, and y,,,,. The approach used by Steger and Sorenson is to numerically

calculate x,,,, and y,,,, during each SOR iteration using the one-sided

approximations shown in equations (E.17) and (E.18) for the 7 = 1 boundary:

x,, = -7x2+8X 2 --x3  3x,, (E.17)

-7y, +8y 2 -y 3  3y,, (E.18)

" 2(A17) 2  - I', =I

and the one-sided approximations shown in equations (E.19) and (E.20) for the

t Imax boundary:

-- x, ... J 1Xq ) - XII 2 3x,

x,, 2(/)2 + 1 (E.19)

-7y,' "_ + 8 Y(i,)- 1) - Y(, .- 2 ) 3 y, (E.20)

2( A)+ .

Once all the necessary first and second derivatives have been determined,

Pb and Qb are calculated using equations (E.7) and (E.8). Thus, most

LM=MMMWW-ffM-
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derivatives needed to compute Pb and Qb can be calculated once and stored,

but x,,,, and y,,,, must be recalculated every iteration prior to calculating

Pb and Qb- Corrections to Pb and Qb are severely under-relaxed each SOR

iteration. Their under-relaxation coefficients are increased from initial values

of approximately 0.01, to approximately 0.05 as convergence is approached.

In order to smoothly propagate the P and Q effects throughout the grid,

these quantities are exponentially interpolated into the interior of the grid

using equations (E.21) and (E.22):

PC(,?/) = P(,1) e - (I -1)/(mn -s) -{P( ,7max) e -b(I'" ' - )/('...-) (E.21)

(,,)= Q( ,1) e - ( - )/ '  - ) -+} Q( 71,...) e-(t" t)( "-) (E.22)

The terms a = a( ), b = b(c), c = c(.), and d = d(.) are positive decay rates

used to control the exponential decay of the P and Q effects into the interior

of the grid. Equations (E.21) and (E.22) differ slightly from those developed by

Steger and Sorenson in that the exponents have been normalized by (71max-1).

This normalization allows the user to change grid density (i.e., the number of

77 = constant lines) without having to change the decay rates proportionately.

A zero finding secant method is used to home in on the appropriate decay

rates at each grid point on each of the 77 = constant boundaries.

Since the theory behind this technique is developed in the limit of infinitely

small space increments, but is applied to a finite size grid, the exact grid

control requested will be approached, but not achieved exactly.

IM _ YM6
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E.2.1.2 GRID CONTROL AT PERIODIC BOUNDARIES. A variation of

Steger and Sorenson's technique has been developed during this investigation

for the periodic boundaries of the cascade grid. This new technique is

described in this scction. Steger and Sorenson's technique allows grid line

intersection angles to be specified, without regard to the slopes of those grid

lines in the physical space. Often, this is exactly the control desired.

However, sometimes the actual slope of a grid line in the physical space must

be specified, with only cautious monitoring of grid line intersection angles.

The periodic boundaries on a C-type cascade grid are an excellent example of

grid line slope specification being superior to grid line intersection angle

specification. Figure E-7 shows graphically that when grid lines pass through

the periodic boundary at other than the stager angle, -1, unnecessary skewness

results in the interior of the grid. Therefore, forcing the £ -- constant grid

lines to intersect the periodic boundaries at the cascade stager angle will both

minimize skewness in the interior of the grid and produce continuous grid line

slopes at the periodic boundary.

This type of slope control can be achieved by Steger and Sorenson's

technique. However, it is unnecessarily cumbersome just calculating the

intersection angle, 0, that corresponds to the stager angle, -. A much more

efficient method has been developed to achieve the same results. If grid line

spacing and slope control is desired along an r/ = constant boundary, the

following equations replace equations (E.15) and (E.16):

-- = sin( ) (E.23)x~-d7i
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Stagger
Angle

Periodic
Boundary

C

C:constant grid lines with
slope- at periodic boundary

---- C"constant grid lines with
slope # 7 at periodic boundary

,q = constant gridlines

Figure E-7. Slope control of grid lines crossing the periodic boundaries.
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-S cos(-,) (E.24)Y'l --- di

In the special case of zero stager angle (i.e., vertical 1 = constant grid lines at

the periodic boundary), equations (E.23) and (E.24) reduce to:

x', = 0 (E.25)

dS (E.26)

, dil

This technique of specifying the slopes of the intersecting grid lines, rather

than the intersection angles, is employed at the periodic boundaries in the

present investigation.

C E.3 GRID POINT DISTRIBUTION ON BOUNDARIES

The placement of grid points on the boundaries of the physical grid is as

important as the grid interior control features discussed above. This section

discusses several considerations concerning boundary grid point distribution

and outlines how these considerations are incorporated in the present

investigation.

The following factors should be considered to properly distribute points

around the boundaries of a cascade blade, C-type grid.

1. Points should be placed in a manner which will provide an appropriate

balance between flow feature resolution and computational efficiency.

In regions of the flow where high property gradients exist (stagnation

points, shock waves, flow velocities near Mach one), the grid points
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should be concentrated to resolve these flow features. On the other

hand, for the sake of computational efficiency, grid points should be

spread out in regions of low property gradients.

2. Points should be concentrated in regions where fine refinement of

physical geometry is required, or conversely, points may need to be

sparse in regions where grid refinement could cause flow solver

instabilities.

3. Smooth transitions in grid point density should be incorporated

inbetween regions of high and low point density.

4. The relative position of corresponding points on the inner and outer

boundary boundaries should minimizes skewness between the

= :onstant and the rl = constant grid lines throughout the grid.

5. Blade geometry is normally provided as a series of discrete (x,y) values.

Automatic curve fitting must be incorporated which will appropriately

distribute grid points on the blade surface. These new (x,y) locations

may not necessarily be the same in number or location as the input

values.

6. Overall grid shape must smoothly and appropriately incorporate cascade

stagger angle, blade spacing, blade camber, and blade thickness.

7. The location of each point on the upper side of the grid cut (trailing edge

to exit) must be exactly the same as the location of the corresponding

point on the lower side of the grid cut.
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8. The location of each point on the periodic boundary on the upper side of

the grid must differ from the corresponding lower side point location only

by the appropriate cascade blade spacing and stagger angle offsets.

E.3.1 BOUNDARY POINT PLACEMENT SEQUENCE. The placement of

points around the boundary of a cascade blade grid is handled in two basic

steps. First, the boundaries are broken into several small segments and each

of these segments is assigned a location in physical space. Second, grid points

are distributed appropriately on each segment.

In the present investigation, the cascade grid boundaries are broken into

the 15 segments shown on Figure E-8. Each of these segments is assigned a

location in physical space as a function of cascade geometry in accordance

with the guidelines described above. The three segments which lie on the

blade surface are constructed using a cubic spline curve fit routine developed

by Akima [20].

Once locations are specified for each of the boundary segments, point

locations on each segment are determined using polynomial curve fits of first,

second, and third order. Each of these polynomials distribute points along the

arc length of the segment as a function of or r. Of course, grid point

locations match at each of the segment intersections. In addition, the grid

point spacing is matched at each of the segment intersections.

Once boundary point locations are determined, this information is passed

to the Poisson grid solver where interior point locations are determined.

'llt
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? Figure E-8. Grid boundaries broken into 15 segments.
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E.4 ADDITIONAL GRID GENERATION CAPABILITIES

The cascade grids used in the present investigation have a zero stagger

angle and a constant blade spacing. The grid generator described in this

appendix is also capable of creating grids which have nonzero stagger and

systems of grids around detuned cascades. This section contains examples of

such grids. In each figure an extra grid has been drawn to illustrate the flow

channel and the cascade periodicity.

Figure E-9 illustrates a C-type grid with a nonzero stagger angle.

The three grids presented in Figure E-10 illustrate a detuned cascade.

Unlike conventional cascade studies, flow solutions on this detuned cascade

require a system of two C-grids since the cascade repeats itself after every

other blade. These grids are being used by Chiang and Fleeter 121] to study

unsteady flows through detuned cascades.

AmN
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Figure iE-9. Cascade with nonzero stagger.
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Figure E-10. Grid system for a detuned cascade.
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APPENDIX F

EXPLICIT ARTIFICIAL DISSIPATION

A numerical solution to the unsteady Euler or Navier-Stokes equations can

be limited by stability considerations. In other words, if the numerical

solution to a set of unsteady partial differential equations diverges rather than

predicting a bounded solution of the equations, no useful information is

derived. A stability analysis for a particular numerical method applied to a

particular set of partial differential equations produces a time step limitation

which must be imposed by the analyist to avoid divergence. Unfortunately,

common stability analysis techniques predict the stability criterion applicable

Ito simplified linear model equations in the absence of the boundaries of the

domain. Therefore, even when the calculated stability restrictions are

enforced, instabilities can still occur. In partic iar, when numerically solving

the Euler or Navier-Stokes equations, nonlinearities in the equation

formulations, various boundary condition implementations, and flow solution

phenomena such as shock waves and stagnation points, often cause numerical

instabilities. Explicit artificial dissipation, or smoothing, is usually applied to

overcome these instabilities.

Numerical dissipation involves smoothing out the locally high and low

property values across the solution domain. In other words, if the value of

density at a grid point is higher than the values of density at the surrounding

grid points, dissipation would lower the density at that point and raise the

0
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surrounding values. The effect is to damp local instabilities. Unfortunately,

dissipation can also cause the flow solution to be smeared to the point that

resolution of flow features is lost.

The term artificial dissipation describes numerical dissipation which does

not model any real physical phenomena. The Euler equations do not contain

any dissipative terms. The viscous terms in the Navier-Stokes equations are

dissipative. However, the level of real dissipaiion in a viscous flow may not be

sufficient to damp numerical instabilities.

When partial derivatives are modeled numerically, the result is not

completely accurate. The numerical approximation actually models the

derivative plus some unwanted higher-order terms. These higher order terms

are often ignored. However, sometimes these terms produce artificial

C dissipation effects. Since this artificial dissipation is a natural result of using

the numerical method, it is referred to as implicit artificial dissipation.

When the modeled physical dissipation (if any) and any implicit artificial

dissipation resulting from inexact derivative approximations are insufficient to

damp instabilities, additional artificial dissipation is explicitly added. This

dissipation is referred to as explicit artificial dissipation.

The following are desirable characteristics of explicit artificial dissipation.

1. Explicit artificial dissipation should cause the numerical model to

produce a stable solution.

2. Explicit artificial dissipation should not cause the numerical solu~l.n to

differ significantly from the real physical solution. In other words, the

~ .,#.
J.%
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dissipation should not unnecessarily smear flow features.

3. Explicit artificial dissipation should be computationally efficient.

F.1 EXPLICIT ARTIFICIAL DISSIPATION MODELS

Since explicit artificial dissipation does not model any real physical

phenomena, there are many acceptable approaches to its implementation.

However, a review of the literature reveals some commonalities between

techniques. For example, numerical dissipation is caused by even-order

derivative approximations. Therefore, explicit artificial dissipation methods

are usually based on some combination of second- and fourth-order derivatives

of the properties being smoothed. The following general equation is

representative of many explicit artificial dissipation models:

GJ
fsmoothed ' _f + At [ C2 (PC 2 sf 2 f +P pc7 2 Sf 772 fp,,

where f represents any fluid property being smoothed, At is the time step at

the point where the smoothing is taking place, all the pc terms are property

dependent coefficients, c2 and c4 are property independent coefficients, and all

the sf terms are grid dependent scaling factors. Each component of equation

(F.1) is discussed below.

Consideration of the numerical approximations of second and fourth

derivatives illustrates why they are dissipative. Equation (F.2) is the standard

11 11. Jl,1
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centered second-order approximation of a second derivative with respect to C:

f+j - 2fi + fi-I

F f+ - 2 + (F.2)

Equation (F.3) is the standard centered second-order approximation of a

fourth derivative with respect to :

fi+2 - 4fi+j + 6fi - 4fi- 1 + fi- 2  (F.3)

As with any numerical approximation of a derivative, the sum of all the

coefficients in each of these approximations is zero. In equation (F.2) the

property value at the central point is subtracted while the values at the

surrounding points are added. If this derivative approximation, times a

fractional coefficient, is added to the value of the property at the central

point, fi, it makes the result a weighted average of the value at the point in

question and the surrounding values. If the point in question had a relatively

high value, it would be lowered, and vice versa.

Similarly for the fourth derivative. If the fourth derivative approximation

times a fractional coefficient is subtracted from the property value at the

central point, fi, it produces a weighted average of the property value at i and

four neighboring points.

The second and fourth derivative terms in equation (F.1) are not used

interchangeably. The second derivative terms are used to damp large and

small instability problems. Fourth derivative terms are used to damp small

oscillations over the entire flowfield. Due to the five point stencil
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4 characteristic of second-order accurate numerical methods applied to two-

dimensional physical spaces, a numerical decoupling of the odd and even grid

lines can occur in the flow solution. Fourth-order dissipation does an excellent

job of smoothing the property value oscillations that are caused by this

decoupling. On the other hand, as Pulliam 122 demonstrates, due to its large

nine point stencil, fourth derivative smoothing creates oscillations across

strong flowfield features such as shock waves.

All the smoothing terms in equation (F.1) are multiplied by the time step.

This causes the smoothing to be scaled at the same magnitude as the space

derivative terms in the Euler or Navier-Stokes equations. In addition, if local

time steps are being used rather than global time steps, multiplication by the

time step will cause more explicit artificial dissipation to be added where

larger time steps may be allowing instabilities to grow faster.

The second-order property dependent coefficients, pc' 2 and pc7/2 , produce

two effects. They cause the artificial dissipation to resemble viscous

dissipation. They also can be used to automatically concentrate large

amounts of dissipation in areas where instability is most threatening.

In a viscous flow, the greatest effects of viscosity are felt where the second

derivatives of velocity are the highest. Similarly, when pc 2 and pc112 are

directly proportional to the second derivative of a property, the artificial

dissipation is concentrated in regions where the second derivatives of the

scaling property are large. Typically, pressure or density is used as the scaling

property in primitive variable or conservative variable flow solvers,
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respectively. The scaling property derivatives are usually normalized by the

magnitude of the scaling property. For example a common scaling factor is

the second derivative of pressure divided by pressure.

In order to spread out and more smoothly apply the effects of explicit

artificial dissipation, a property dependent scaling factor can be made

proportional to the largest second derivative of the scaling property on any

grid point in the five point stencil associated with the grid point being

smoothed. As these schemes become more elaborate, they also tend to become

more computationally demanding.

By scaling explicit artificial dissipation with property derivatives, the

dissipative effects are automatically concentrated in areas where instability is

likely to occur or is already evident. Some flowfield regions, such as near

*shock waves or near airfoil trailing edges, are characterized by rapid changes

or discontinuities in property values. These rapid changes or discontinuities

often cause numerical instability. In the early stages of development,

numerical instability is usually evidenced by roughness in solution property

value surfaces. Therefore, in unstable regions of the flowfield and near

physical phenomena where instability is likely, the second derivatives of

pressure and density are large. Thus, scaling in proportion to these second

derivatives applies the dissipation where it is most needed.

Multiplying pc 2 or pcr72 times their respective dissipative second

derivatives produces the product of two second derivatives. By convention this

product is sometimes referred to as product fourth-order dissipation. This

LAW
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should not to be confused with the actual fourth-order dissipation terms in

equation (F.1).

Fourth derivative dissipation usually requires more computational effort

than second derivative dissipation. Also, on the relatively coarse grids used

for inviscid calculations, the nine point stencil used to calculate fourth

derivatives can stretch across a large region of the grid. This can cause

excessive smearing. In addition, fourth derivative dissipation is not normally

required for stability. Therefore, unless a very high level of convergence is

required or aesthetic smoothing of small wiggles in the property values is

desired, the fourth derivative terms can be eliminated completely.

Like pc 2 and pc772 , the fourth derivative scaling factors, pc 4 and pcr14 , are

property dependent. However, rather than using roughness in property value

surfaces to increase these dissipation coefficients, pc 4 and pcr/4 are normally

decreased in regions where property value surfaces are rough. As discussed

earlier, fourth-order dissipation causes oscillations across flow features such as

shock waves. Therefore, in these regions of the flowfield, researchers such as

Jameson [23J and Pulliam [22] gain stability through second-order Fxplicit

artificial dissipation and force the fourth derivative coefficients to zero.

Calculating pc 2 , pc772, pc 4, and pcrq4 requires a significant amount of

computational effort. In many flowfields these scaling factors are not needed.

Therefore, these factors are often all set to a constant value of 1.0. Since this

removes the fluid property dependence from the coefficients of the damping

terms, much of the similarity with natural dissipation is lost. The resulting
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simpler damping terms are often referred to as smoothing rather than artificial

dissipation.

The property independent coefficients, c 2 and c4, are used whether or not

property dependent coefficients are used. These coefficients set the magnitude

of the dissipation over the entire flowfield. In some cases it is beneficial to

vary these coefficients as a function of time. For example, c2 might be linearly

decreased from a value of 1.0 to a value of 0.4 over the period of 1000 time

steps. This may keep a rough initial-value surface from making the solution

diverge during the first few time steps while still minimizing flow feature

smearing of the converged solution.

The coefficients sf 2 , sf??2 , sf 4, and sf714 scale the dissipative terms to

ecorrect unwanted, grid dependent scaling of the dissipative derivatives. The

dissipative derivatives in equation (F.1) are all taken with respect to the

computational variables ( ,rj). On the computational grid, all grid lines are

equally spaced. On the physical grid, the grid lines are not equally spaced.

Therefore, derivatives with a given magnitude in physical space will, when

differentiated in computational space, have a smaller magnitude in densely

packed regions of the grid than in sparsely packed regions of the grid.

Without the sf correction factor terms, sufficient smoothing near densely

packed areas of the grid will cause excessive smoothing in relatively coarse

areas of the grid. To accentuate this problem still further, grids are often

packed near boundaries where many instabilities originate. Fortunately, if the

grids are stationary, the scaling factor terms can be calculated once, at the

beginning of the flow study, stored, and used at each time step.
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F.2 EXPLICIT ARTIFJCIAL DISSIPATION NEAR BOUNDARIES

The boundaries of the computational domain can be the source of some

numerical instabilities. However, special consideration must be given to

implementing explicit artificial dissipation near flowfield boundaries. In fact,

the subtle problems encountered when smoothing is applied perpendicular to

boundaries are so difficult that it is usually considered best not to smooth

perpendicular to boundaries. The following paragraphs explain why simple

extensions of interior point dissipation implementations can produce

unacceptable results.

Fluid properties are computed only on one side of the grid points which lie

on the computational boundaries of a fiowfield. Therefore, equatio.ns (F.2) and

(F.3) can not be applied at these points, perpendicular to the boundary,

without some extra provision. Several possible modifications to the interior

point implementations exist. Four possibilities for smoothing at the

boundaries are listed and discussed below. At first these options appear to

make smoothing at the boundaries simple and feasible. However, closer

examination reveals that none of these options are profitable.

1. Use linear extrapolation to approximate property values outside the

boundary. Then use a standard, second-order derivative approximations

at the boundary point to smooth.

2. Use quadratic extrapolation to approximate property values outside the

boundary. Then use a standard, second-order derivative approximations

at the boundary point to smooth.

4°
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3. Use the standard one-sided -cond derivative approximation at the

boundary point to smooth.

4. Use the standard one-sided first derivative approximation at the

boundary point to smooth.

The standard linear extrapolation formula is:

fo,, = 2 f1,,1 - f2,,, (F.4)

where, for this example, the boundary point is the =1 grid point.

Substituting equation (F.4) into equation (F.2) with i = 1 yields exactly zero.

This is to be expected since a linear extrapolation approximates a straight line

and therefore, no second derivatives can exist.

The standard quadratic extrapolation formula is:

fo,, =3f,, - 3 f2,,j + f3,,) (F.5)

where, again, the boundary point is the =1 grid point. Substituting equation

(F.5) into equation (F.2) yields the following approximation for the second

derivative of f with respect to at a - 1 boundary:

f,, = fl,, - 2f 2 ,, +  f3 ,,, (F.6)

Unfortunately, using equation (F.6) to smooth at point (1,rj) would have the

opposite effect. If this derivative approximation, times a fractional coefficient,

is added to fl,,,, the difference between fl,,, and f2,,, would increase, rather than

decrease! Thus, instead of damping instabilities, they are excited.

Instead of extrapolating across the boundary and using centered differences

to approximate derivatives, one-sided approximations might be used. The

.* ~~~~~~~C5111C1111 ViNx a r' F -' - : 7 : .? . ,, , . . ,
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one-sided second derivative approximation at point (1,ij) is exactly equation

(F.6). Therefore, this approach would also be counter productive.

The one-sided approximation of the first derivative of f with respect to ( at

point (1,i1) is:

f2,,i - fl,,q(F 7

If this derivative approximation, times a fractional coefficient, is added to fl,,,

the difference between fl,,, and f2 ,,, would be decreased, as desired. However,

this first derivative is convective, rather than dissipative. Therefore, rather

than averaging surrounding points, the effect would be to convect interior

point property values to the boundaries and significantly alter the flowfield

solution.

Other possibilities exist for smoothing perpendicular to boundaries.

However, care must be exercised to avoid variations of the same problems

encountered above. One usable scheme is to use the one-sided second

derivative approach, equation (F.6), described in (3) above, but multiply the

smoothing term by minus 1.0.

Because of the difficulties associated with implementing explicit artificial

dissipation perpendicular to computational boundaries, many researchers do

not smooth perpendicular to boundaries. Instead, enough explicit dissipation

is added throughout the remainder of the grid to control instabilities.

Until now no mention has been made of implementing explicit artificial

dissipation along (parallel to) computational boundaries. Smoothing along

"S
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computational boundaries is feasible. However, in some cases special

precautions must still be taken. For example, along a free slip, impermeable

boundary, when the velocity is smoothed, extra effort should be applied to

insure the resulting velocity vector is tangent to the boundary.

F.3 EXPLICIT ARTIFICIAL DISSIPATION FOR THE PRESENT

INVESTIGATION

In the first two sections of this appendix, a variety of explicit artificial

dissipation techniques and special considerations are discussed. Obviously,

explicit artificial dissipation schemes can be simple or complex. They can also

be efficient or very demanding computationally. For the sake of economy,

explicit artificial dissipation should be kept as simple as possible. This section

describes the approach to explicit artificial dissipation used in the present

investigation.

The current research effort employs a conservation variable form of the

Kentzer method [2] at the flowfield boundaries and the MacCormack method

[31 throughout the flowfield. This combination requires some explicit artificial

dissipation to avoid instabilities. Specifically, the blade surface boundary

appears to generate instabilities. However, when a small amuuat of smoothing

is applied over the majority of the grid, excellent results are achieved.

For the sake of computational efficiency, only second derivative smoothing

is applied. In other words, the fourth derivative terms are not used, and pcc72

and pc772 are each set to 1.0. Therefore, the general formula used to smooth

each of the four conservation variable properties p, pu, lv, and pe, is:
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fsroothed f+ Atc 2 [sfC2 fI, +sf17 2 f,,,] (F.8)

At the blade surface and trailing edge point boundaries, smoothing is only

applied tangent to the boundaries. At these boundaries the momentum

magnitude is smoothed and then split into x and y components to insure

tangency.

No smoothing is applied at the inflow or the exit boundaries.

Interior points on periodic boundaries and on grid cut boundaries are

treated like other interior points but with special indexing required due to the

boundary locations on the computational grid.

The property independent coefficient, c2 , is linearly decreased in time from

San initial-value to approximately half that value in the following manner. The

upper and lower limits of c2 are set along with a multiplying factor. At each

time step, the value of c2 is multiplied by the multiplying factor until the

lower limit of c2 is reached. At all subsequent time steps c 2 is maintained at

the lower limit.

As described in Section F.1 of this appendix, the grid dependent scaling

factors, sfk2 and sfr 2, are used to correct unwanted, grid dependent scaling of

the dissipation derivatives, f and f,,,,. Without these factors, the dissipation

derivatives have less effect in areas of the physical grid where grid points are

densely packed than in areas where grid points are sparse. To eliminate this

effect, a procedure has been developed to rescale property derivatives which

are taken with respect to computational directions.

@I
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Consider a curve in physical space, s, which follows any computational grid

line. For illustrative purposes, assume s follows an t/ -constant grid line.

Differentiating the dissipative derivatives with respect to s, rather than " or //,

solves the grid scaling problem. Along the 7/=constant grid line, the first

derivative of a property f with respect to s is fS= f, 6. Differentiating again

with respect to s produces:

f. (F.9)

This expression can be further manipulated to produce:

fss = (fA) 4 + f4 (Vs)s (F. 10)

fs. = f4 ()2 + f( (S (F.11)

As described in Appendix E, a serious effort is made to insure that grid cell

sizes and shapes change only gradually on the physical grid. Therefore,

S-z 0. Assuming this is exactly the case, equation (F.11) becomes:

f" = f4 ( .)2 (F. 12)

Using finite differences, A A\/zAs. Remembering that s is a function of x

and y and that A= 1.0, equation (F.12) becomes:
1

1Is =(F.13)
(xi+ ,j - xi - j)2  + (yi+l,j- _- l,j) 2

4 4

and

JI
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Kr X~~_i 4 (F. 14)

( ) ( --. i-,j)2  + (Yi+ ,j- (i),j)

This term is the scaling factor used to eliminate unwanted grid dependent

scaling for dissipative derivatives with respect to the " direction. Therefore:

4
sf = - + (F.15)

'2 (Xi+l, j - x i _ l ,j )
2 -t ( y i+ l ,j -  i-l,j)2

Similarly, for dissipative derivatives with respect to ?/:

sfr12 = -Xjp._IX ,- 4yi,) (F.16)( X i~j 1  j ) 2 + ( Y i,j + l -- _i j 1 ) 2

The cascade grids used in the present investigation do not change with

time. Also, sf- 2 and sf7/ 2 are functions only of grid point locations. Therefore,

sf 2 and sfr/2 are calculated once and stored, prior to the first time step.

These stored values are then used at every time step.

0't

~**~ ~* *



VITA

AM



V ITA

Richard McCrea Moore

As the member of a military f'amily he spent the first 17 years of his life

at a variety of locations in the United States and on the Japanese island of

Okinawa. In 1977 he graduated from the United States Air Force Academy

with a Bachelor of Science degree in Aeronautical Engineering. As a

lieutenant he was an Advanced Guided Weapons Test Engineer at the Air

Force Armament Division at Eglin Air Force Base, Florida. At the Armament

Division he tested air-to-air missiles, and remotely piloted target drones. From-

1981 to 1982 Captain Moore attended the Air Force Institute of Technology

where he graduated with a Master of Science degree in Aeronautical

Engineering. In 1983 he returned to the United States Air Force Academy as

an Instructor in the Department of Aeronautics where he taught aeronautics,

thermodynamics and propulsion. After two years of teaching, the Department

of Aeronautics sponsored his Ph.D. studies at Purdue University. After

graduating from Purdue University as a Doctor of Philosophy, Major Moore

will return to the Air Force Academy as zn Associate Professor and the head

of the propulsion group.


